Skip to main content
Log in

Automatic segmentation of subcutaneous mouse tumors by multiparametric MR analysis based on endogenous contrast

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Contrast-enhanced T1-weighted imaging is usually included in MRI procedures for automatic tumor segmentation. Use of an MR contrast agent may not be appropriate for some applications, however. We assessed the feasability of automatic tumor segmentation by multiparametric cluster analysis that uses intrinsic MRI contrast only.

Materials and methods

Multiparametric MRI consisting of quantitative T1, T2, and apparent diffusion coefficient (ADC) mapping was performed in mice bearing subcutaneous tumors (n = 21). k-means and fuzzy c-means clustering with all possible combinations of MRI parameters, i.e. feature vectors, and 2–7 clusters were performed on the multiparametric data. Clusters associated with tumor tissue were selected on the basis of the relative signal intensity of tumor tissue in T2-weighted images. The optimum segmentation method was determined by quantitative comparison of automatic segmentation with manual segmentation performed by three observers. In addition, the automatically segmented tumor volumes from seven separate tumor data sets were quantitatively compared with histology-derived tumor volumes.

Results

The highest similarity index between manual and automatic segmentation (SImanual,automatic = 0.82 ± 0.06) was observed for k-means clustering with feature vector {T2, ADC} and four clusters. A strong linear correlation between automatically and manually segmented tumor volumes (R 2 = 0.99) was observed for this segmentation method. Automatically segmented tumor volumes also correlated strongly with histology-derived tumor volumes (R 2 = 0.96).

Conclusion

Automatic segmentation of mouse subcutaneous tumors can be achieved on the basis of endogenous MR contrast only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Partridge SC, Gibbs JE, Lu Y et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184:1774–1781

    Article  PubMed  Google Scholar 

  2. Alderliesten T, Schlief A, Peterse J et al (2007) Validation of semiautomatic measurement of the extent of breast tumors using contrast-enhanced magnetic resonance imaging. Invest Radiol 42:42–49

    Article  PubMed  Google Scholar 

  3. Chen W, Giger ML, Bick U (2006) A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad Radiol 13:63–72

    Article  PubMed  Google Scholar 

  4. Kannan SR, Ramathilagam S, Devi P et al (2012) Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI. J Med Syst 36:321–333

    Article  CAS  PubMed  Google Scholar 

  5. Pang Y, Li L, Hu W et al (2012) Computerized segmentation and characterization of breast lesions in dynamic contrast-enhanced MR images using fuzzy c-means clustering and snake algorithm. Comput Math Methods Med 2012:634907

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vignati A, Giannini V, De Luca M et al (2011) Performance of a fully automatic lesion detection system for breast DCE-MRI. J Magn Reson Imag 34:1341–1351

    Article  Google Scholar 

  7. Vos PC, Barentsz JO, Karssemeijer N et al (2012) Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys Med Biol 57:1527–1542

    Article  CAS  PubMed  Google Scholar 

  8. Ozer S, Langer DL, Liu X et al (2010) Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys 37:1873–1883

    Article  PubMed  Google Scholar 

  9. Harati V, Khayati R, Farzan A (2011) Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput Biol Med 41:483–492

    Article  PubMed  Google Scholar 

  10. Liu J, Udupa JK, Odhner D et al (2005) A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imag Graph 29:21–34

    Article  Google Scholar 

  11. Fathi Kazerooni A, Mohseni M, Rezaei S et al (2014) Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phy. doi:10.1007/s10334-014-0442-7

    Google Scholar 

  12. Lodder WL, Gilhuijs KG, Lange CA et al (2013) Semi-automated primary tumor volume measurements by dynamic contrast-enhanced MRI in patients with head and neck cancer. Head Neck 35:521–526

    Article  PubMed  Google Scholar 

  13. Hijnen N, Elevelt A, Grüll H (2012) Effects of MRI Contrast Agents during HIFU ablation therapy. In: Proceedings of the 3rd MRgFUS symposium, Washington DC, USA ID P-116-EA

  14. Hijnen NM, Elevelt A, Grüll H (2013) Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy. Invest Radiol 48:517–524

    Article  CAS  PubMed  Google Scholar 

  15. MacNeil S, Bains S, Johnson C et al (2011) Gadolinium contrast agent associated stimulation of human fibroblast collagen production. Invest Radiol 46:711–717

    CAS  PubMed  Google Scholar 

  16. Kuo PH, Kanal E, Abu-Alfa AK et al (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649

    Article  PubMed  Google Scholar 

  17. Amet S, Deray G (2012) Renal toxicity of contrast agents in oncologic patients. Bull Cancer 99:295–307

    CAS  PubMed  Google Scholar 

  18. Hsieh TM, Liu YM, Liao CC et al (2011) Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 11:54

    Article  PubMed Central  PubMed  Google Scholar 

  19. Montelius M, Ljungberg M, Horn M et al (2012) Tumour size measurement in a mouse model using high resolution MRI. BMC Med Imaging 12:12

    Article  PubMed Central  PubMed  Google Scholar 

  20. Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213

    Article  PubMed  Google Scholar 

  21. Lim HK, Kim JK, Kim KA et al (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 250:145–151

    Article  PubMed  Google Scholar 

  22. Levitt M, Freeman R (1981) Compensation for pulse imperfections in NMR spin-echo experiments. J Magn Reson 43:56–80

    Google Scholar 

  23. Karlsson M, Nordell B (1999) Phantom and in vivo study of the Look-Locher T1 mapping method. Magn Reson Imag 17:1481–1488

    Article  CAS  Google Scholar 

  24. Omran MGH, Engelbrecht AP, Salman A (2007) An overview of clustering methods. Intell Data Anal 11:583–605

    Google Scholar 

  25. Zijdenbos AP, Dawant BM, Margolin RA et al (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imag 13:716–724

    Article  CAS  Google Scholar 

  26. Khayati R, Vafadust M, Towhidkhah F et al (2008) Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput Biol Med 38:379–390

    Article  PubMed  Google Scholar 

  27. Hectors SJ, Jacobs I, Strijkers GJ et al (2014) Multiparametric MRI analysis for the identification of high intensity focused ultrasound-treated tumor tissue. PLoS ONE 9:e99936

    Article  PubMed Central  PubMed  Google Scholar 

  28. Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York

  29. Schmitz AC, Gianfelice D, Daniel BL et al (2008) Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur Radiol 18:1431–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Spuentrup E, Buecker A, Adam G et al (2001) Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Am J Roentgenol 176:351–358

    Article  CAS  Google Scholar 

  31. Zhang CC, Yan Z, Giddabasappa A et al (2014) Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib. Cancer Med 3:462–471

    Article  PubMed Central  PubMed  Google Scholar 

  32. Zhen Z, Tang W, Chuang YJ et al (2014) Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 8:6004–6013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhang L, Zhou H, Belzile O et al (2014) Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J Controll Release 183:114–123

    Article  CAS  Google Scholar 

  34. Linguraru MG, Richbourg WJ, Liu J et al (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imag 31:1965–1976

    Article  Google Scholar 

  35. Alic L, Haeck JC, Bol K et al (2011) Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: image registration approach. PLoS ONE 6:e22835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tidwell VK, Garbow JR, Krupnick AS et al (2012) Quantitative analysis of tumor burden in mouse lung via MRI. Magn Reson Med 67:572–579

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project VOLTA (grant 05T-201).

Conflict of interest

The authors have no conflict of interest.

Ethical standards

All animal experiments were performed according to the Directive 2010/63/EU of the European Parliament and approved by the Animal Care and Use Committee of Maastricht University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie J. C. G. Hectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hectors, S.J.C.G., Jacobs, I., Strijkers, G.J. et al. Automatic segmentation of subcutaneous mouse tumors by multiparametric MR analysis based on endogenous contrast. Magn Reson Mater Phy 28, 363–375 (2015). https://doi.org/10.1007/s10334-014-0472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0472-1

Keywords

Navigation