Skip to main content
Log in

Influence of blood/tissue differences in contrast agent relaxivity on tracer-based MR perfusion measurements

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Purpose

Perfusion assessment by monitoring the transport of a tracer bolus depends critically on conversion of signal intensity into tracer concentration. Two main assumptions are generally applied for this conversion; (1) contrast agent relaxivity is identical in blood and tissue, (2) change in signal intensity depends only on the primary relaxation effect. The purpose of the study was to assess the validity and influence of these assumptions.

Materials and methods

Blood and cerebral tissue relaxivities r1, r2, and r2* for gadodiamide were measured in four pigs at 1.5 T. Gadolinium concentration was determined by inductively coupled plasma atomic emission spectroscopy. Influence of the relaxivities, secondary relaxation effects and choice of singular value decomposition (SVD) regularization threshold was studied by simulations.

Results

In vivo relaxivities relative to blood concentration [in s−1 mM−1 for blood, gray matter (GM), white matter (WM)] were for r1 (2.614 ± 1.061, 0.010 ± 0.001, 0.004 ± 0.002), r2 (5.088 ± 0.952, 0.091 ± 0.008, 0.059 ± 0.014), and r2* (13.292 ± 3.928, 1.696 ± 0.157, 0.910 ± 0.139). Although substantial, by a nonparametric test for paired samples, the differences were not statistically significant. The GM to WM blood volume ratio was estimated to 2.6 ± 0.9 by r1, 1.6 ± 0.3 by r2, and 1.9 ± 0.2 by r2*. Secondary relaxation was found to reduce the tissue blood flow, as did the SVD regularization threshold.

Conclusion

Contrast agent relaxivity is not identical in blood and tissue leading to substantial errors. Further errors are introduced by secondary relaxation effects and the SVD regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    Article  CAS  Google Scholar 

  2. Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321

    Article  CAS  Google Scholar 

  3. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546

    Article  CAS  Google Scholar 

  4. Larson KB, Perman WH, Perlmutter JS, Gado MH, Ollinger JM, Zierler K (1994) Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. J Theor Biol 170:1–14

    Article  CAS  Google Scholar 

  5. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  Google Scholar 

  6. Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O (2008) Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 27:754–762

    Article  Google Scholar 

  7. Young GS, Setayesh K (2009) Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 30:575–577

    Article  CAS  Google Scholar 

  8. Knutsson L, Stahlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phys 23:1–21

    Article  CAS  Google Scholar 

  9. Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641

    Article  CAS  Google Scholar 

  10. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  CAS  Google Scholar 

  11. Jonsson O, Morell A, Zemgulis V, Lundstrom E, Tovedal T, Einarsson GM, Thelin S, Ahlstrom H, Bjornerud A, Lennmyr F (2011) Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20 degrees centigrade. Ann Thorac Surg 91:1198–1205

    Article  Google Scholar 

  12. Van Wagoner M, Worah D (1993) Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent. Invest Radiol 28(Suppl 1):S44–S48

    Article  Google Scholar 

  13. Deichmann R, Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 96:5

    Google Scholar 

  14. Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112

    Article  CAS  Google Scholar 

  15. Lin W, Celik A, Paczynski RP (1999) Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9:44–52

    Article  CAS  Google Scholar 

  16. Newman GC, Delucia-Deranja E, Tudorica A, Hospod FE, Patlak CS (2003) Cerebral blood volume measurements by T*2-weighted MRI and contrast infusion. Magn Reson Med 50:844–855

    Article  CAS  Google Scholar 

  17. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N, Kuwabara Y, Senda M (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31:635–643

    Article  Google Scholar 

  18. Morell A, Ahlstrom H, Schoenberg SO, Abildgaard A, Bock M, Bjornerud A (2008) Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening. Acta Radiol 49:955–962

    Article  CAS  Google Scholar 

  19. Bjornerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC–MRI. J Cereb Blood Flow Metab 30:1066–1078

    Article  Google Scholar 

  20. Calamante F, Connelly A, van Osch MJ (2009) Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 61:486–492

    Article  Google Scholar 

  21. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473

    Article  CAS  Google Scholar 

  22. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  Google Scholar 

  23. Knutsson L, Stahlberg F, Wirestam R (2004) Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 22:789–798

    Article  Google Scholar 

  24. Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, Gao JH (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167–172

    Article  CAS  Google Scholar 

  25. Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147–3159

    Article  CAS  Google Scholar 

  26. Calamante F, Vonken EJ, van Osch MJ (2007) Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 58:544–553

    Article  Google Scholar 

  27. Knutsson L, Stahlberg F, Wirestam R, van Osch MJ (2013) Effects of blood DeltaR2* non-linearity on absolute perfusion quantification using DSC–MRI: comparison with Xe-133 SPECT. Magn Reson Imaging 31:651–655

    Article  Google Scholar 

  28. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076

    Article  Google Scholar 

  29. Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122

    Article  CAS  Google Scholar 

  30. Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging 12:411–416

    Article  CAS  Google Scholar 

  31. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    Article  CAS  Google Scholar 

  32. Bjornerud A, Johansson LO, Ahlstrom HK (2002) Renal T(*)(2) perfusion using an iron oxide nanoparticle contrast agent–influence of T(1) relaxation on the first-pass response. Magn Reson Med 47:298–304

    Article  Google Scholar 

  33. Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197

    Article  CAS  Google Scholar 

  34. Newman GC, Hospod FE, Patlak CS, Fain SE, Pulfer KA, Cook TD, O’Sullivan F (2006) Experimental estimates of the constants relating signal change to contrast concentration for cerebral blood volume by T2* MRI. J Cereb Blood Flow Metab 26:760–770

    Article  Google Scholar 

  35. Johnson KM, Tao JZ, Kennan RP, Gore JC (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914

    Article  CAS  Google Scholar 

  36. Morkenborg J, Taagehoj JF, Vaever PN, Frokiaer J, Djurhuus JC, Stodkilde-Jorgensen H (1998) In vivo measurement of T1 and T2 relaxivity in the kidney cortex of the pig-based on a two-compartment steady-state model. Magn Reson Imaging 16:933–942

    Article  CAS  Google Scholar 

  37. Pedersen M, Klarhofer M, Christensen S, Ouallet JC, Ostergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20:930–940

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council; grants K2013-64x-08268-26-3 and 621-2011-4423. Håkan Pettersson is acknowledged for the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvid Morell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morell, A., Lennmyr, F., Jonsson, O. et al. Influence of blood/tissue differences in contrast agent relaxivity on tracer-based MR perfusion measurements. Magn Reson Mater Phy 28, 135–147 (2015). https://doi.org/10.1007/s10334-014-0452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0452-5

Keywords

Navigation