Skip to main content
Log in

30 years of sodium/X-nuclei magnetic resonance imaging

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

In principle, all nuclei with nonzero spin can be employed for magnetic resonance imaging (MRI). Special scanner hardware and MR sequences are required to select the nucleus-specific frequency and to enable imaging with “sufficient” signal-to-noise ratio. This Special Issue starts with an overview of different nuclei that can be used for MRI today, followed by a review article about techniques required for imaging of quadrupolar nuclei with short relaxation times. Sequence developments to improve image quality and applications on different organs and diseases are presented for different nuclei (23Na, 35Cl, 17O, and 19F), with a focus on imaging at natural abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

    Google Scholar 

  2. Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol 4(3):245–249

    CAS  PubMed  Google Scholar 

  3. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715

    Article  CAS  PubMed  Google Scholar 

  4. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573

    Article  PubMed  Google Scholar 

  5. Konstandin S, Nagel AM (2013) Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. Magn Reson Med 69(2):495–502

    Article  CAS  PubMed  Google Scholar 

  6. Maudsley AA, Hilal SK (1984) Biological aspects of sodium-23 imaging. Br Med Bull 40(2):165–166

    CAS  PubMed  Google Scholar 

  7. Ra JB, Hilal SK, Oh CH, Mun IK (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med 7(1):11–22

    Article  CAS  PubMed  Google Scholar 

  8. Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166

    Article  CAS  PubMed  Google Scholar 

  9. Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62

    Article  PubMed  Google Scholar 

  10. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537

    Article  PubMed  Google Scholar 

  11. Sandstede JJ, Hillenbrand H, Beer M, Pabst T, Butter F, Machann W, Bauer W, Hahn D, Neubauer S (2004) Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 52(3):545–551

    Article  CAS  PubMed  Google Scholar 

  12. Ouwerkerk R, Bottomley PA, Solaiyappan M, Spooner AE, Tomaselli GF, Wu KC, Weiss RG (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative 23Na MR imaging study. Radiology 248(1):88–96

    Article  PubMed Central  PubMed  Google Scholar 

  13. Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234

    Article  CAS  PubMed  Google Scholar 

  14. Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865

    Article  PubMed  Google Scholar 

  15. Near J, Bartha R (2010) Quantitative sodium MRI of the mouse prostate. Magn Reson Med 63(3):822–827

    Article  PubMed  Google Scholar 

  16. Hausmann D, Konstandin S, Wetterling F, Haneder S, Nagel AM, Dinter DJ, Schonberg SO, Zollner FG, Schad LR (2012) Apparent diffusion coefficient and sodium concentration measurements in human prostate tissue via hydrogen-1 and sodium-23 magnetic resonance imaging in a clinical setting at 3T. Invest Radiol 47(12):677–682

    Article  CAS  PubMed  Google Scholar 

  17. Gupta RK, Gupta P (1982) Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium(III)tripolyphosphate as paramagnetic shift reagent. J Magn Reson (1969) 47:344–350

    Google Scholar 

  18. Borthakur A, Hancu I, Boada FE, Shen GX, Shapiro EM, Reddy R (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson 141(2):286–290

    Article  CAS  PubMed  Google Scholar 

  19. Schepkin VD, Choy IO, Budinger TF, Obayashi DY, Taylor SE, DeCampli WM, Amartur SC, Young JN (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39(4):557–563

    Article  CAS  PubMed  Google Scholar 

  20. Madelin G, Babb J, Xia D, Chang G, Krasnokutsky S, Abramson SB, Jerschow A, Regatte RR (2013) Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 268(2):481–491

    Article  PubMed  Google Scholar 

  21. Mellon EA, Pilkinton DT, Clark CM, Elliott MA, Witschey WR 2nd, Borthakur A, Reddy R (2009) Sodium MR imaging detection of mild Alzheimer disease: preliminary study. AJNR Am J Neuroradiol 30(5):978–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867

    Article  PubMed  Google Scholar 

  23. Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27(1):5–19

    Article  Google Scholar 

  24. Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. Magn Reson Mater Phy 27(1):21–33

    Article  Google Scholar 

  25. Riemer F, Solanky BS, Stehning C, Clemence M, Wheeler-Kingshott CA, Golay X (2014) Sodium (23Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory. Magn Reson Mater Phy 27(1):35–46

    Google Scholar 

  26. Gurney PT, Hargreaves BA, Nishimura DG (2006) Design and analysis of a practical 3D cones trajectory. Magn Reson Med 55(3):575–582

    Article  PubMed  Google Scholar 

  27. Haneder S, Michaely HJ, Konstandin S, Schad LR, Morelli JN, Krämer BK, Schoenberg SO, Lammert A (2014) 3T Renal 23Na-MRI: effects of desmopressin in patients with central diabetes insipidus. Magn Reson Mater Phy 27(1):47–52

    Article  Google Scholar 

  28. Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain 133(Pt3):847–857

    Article  CAS  PubMed  Google Scholar 

  29. Maarouf A, Audoin B, Konstandin S, Rico A, Soulier E, Reuter F, Le Troter A, Confort-Gouny S, Cozzone PJ, Guye M, Schad LR, Pelletier J, Ranjeva JP, Zaaraoui W (2014) Topography of brain sodium accumulation in progressive multiple sclerosis. Magn Reson Mater Phy 27(1):53–62

    Google Scholar 

  30. Schepkin VD, Elumalai M, Kitchen JA, Qian C, Gor’kov PL, Brey WW (2014) In vivo chlorine and sodium MRI of rat brain at 21.1 T. Magn Reson Mater Phy 27(1):63–70

    Google Scholar 

  31. Baier S, Krämer P, Grudzenski S, Fatar M, Kirsch S, Schad LR (2014) Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. Magn Reson Mater Phy 27(1):71–79

    Google Scholar 

  32. Gordji-Nejad A, Möllenhoff K, Oros-Peusquens AM, Pillai DR, Shah NJ (2014) Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields. Magn Reson Mater Phy 27(1):81–93

    Google Scholar 

  33. Borowiak R, Groebner J, Haas M, Hennig J, Bock M (2014) Direct cerebral and cardiac 17O-MRI at 3 Tesla: initial results at natural abundance. Magn Reson Mater Phy 27(1):95–99

    Google Scholar 

  34. Jacoby C, Borg N, Heusch P, Sauter M, Bönner F, Kandolf R, Klingel K, Schrader J, Flögel U (2014) Visualization of immune cell infiltration in experimental viral myocarditis by 19F MRI in vivo. Magn Reson Mater Phy 27(1):101–106

    Article  Google Scholar 

  35. Terekhov M, Scholz A, Schreiber LM (2014) Measurement of anesthetic uptake kinetics in the brain using 19F MRI and cross-correlation analysis after pulsed application. Magn Reson Mater Phy 27(1):107–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Konstandin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstandin, S., Schad, L.R. 30 years of sodium/X-nuclei magnetic resonance imaging. Magn Reson Mater Phy 27, 1–4 (2014). https://doi.org/10.1007/s10334-013-0426-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0426-z

Keywords

Navigation