Skip to main content
Log in

Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection?

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The prediction of embryo viability by usual morphological analysis is currently unsatisfactory. New non-invasive techniques such as high-resolution nuclear magnetic resonance (1H-NMR) spectroscopy that allows assessment of metabolic profiling in spent culture media might help embryologists to predict embryo development.

Materials and methods

Individual microdrops of culture media were analysed after 24 h of embryo culture (from day 3 to day 4) by spectroscopy using a 1 mm microliter probe allowing analysis without sample dilution. Embryos were divided into two groups on day 5: non-arrested embryos (n = 19) and arrested embryos unable to reach the blastocyst stage (n = 20). Multivariate analysis techniques such as Principal Component Analysis (PCA) and Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) were performed to compare extracellular metabolite balance.

Results

1H-NMR used in combination with a 1 mm probe suggested that in vitro cultured human embryos that have a high developmental potential modify their environment slightly compared to embryos that cease to develop. However, differences between the two groups did not reach statistical significance and multivariate statistical analysis did not allow clustering of the two groups.

Conclusion

This study indicated that this technique would not be sufficiently powerful alone to provide information that might help to assess the developmental potential of individual embryos for in vitro fertilisation (IVF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ESHRE, Campus Course Report (2001) Prevention of twin pregnancies after IVF/ICSI by single embryo transfer. Hum Reprod 16:790–800

    Article  Google Scholar 

  2. Bergh C (2005) Single embryo transfer: a mini-review. Hum Reprod 20:323–327

    Article  PubMed  Google Scholar 

  3. Braude P, Bolton V, Moore S (1998) Human gene expression first occurs between the 4-and 8-cell stages of preimplantation development. Nature 332:459–461

    Article  Google Scholar 

  4. Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J (1998) A prospective randomized trial of blastocyst culture and transfer in in vitro fertilization. Hum Reprod 13:3340–3434

    Google Scholar 

  5. Rijnders PM, Jansen CA (1998) The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in vitro fertilization or intracytoplasmic sperm injection. Hum Reprod 13:2869–2873

    Article  PubMed  CAS  Google Scholar 

  6. Graham J, Han T, Porter R, Levy M, Stillman R, Tucker MJ (2000) Day 3 morphology is a poor predictor of blastocyst quality in extended culture. Fertil Steril 74:495–497

    Article  PubMed  CAS  Google Scholar 

  7. Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, Royere D (2007) Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod 22:1973–1981

    Article  PubMed  CAS  Google Scholar 

  8. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB (2009) The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod 15:271–277

    Article  PubMed  CAS  Google Scholar 

  9. Lindon JC, Nicholson JK, Holmes E, Antti H, Bollard ME, Keun H, Beckonert O, Ebbels TM, Reily MD, Robertson D, Stevens GJ, Luke P, Breau AP, Cantor GH, Bible RH, Niederhauser U, Senn H, Schlotterbeck G, Sidelmann UG, Laursen SM, Tymiak A, Car BD, Lehman-McKeeman L, Colet JM, Loukaci A, Thomas C (2003) Contemporary issues in toxicology the role of metabolomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 187:137–146

    Article  PubMed  CAS  Google Scholar 

  10. Seli E, Botros L, Sakkas D, Burns D (2008) Non invasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 90:2183–2189

    Article  PubMed  Google Scholar 

  11. Graça G, Duarte IF, Barros AS, Goodfellow BJ, Diaz S, Carreira IM, Couceiro AB, Galhano E, Gil AM (2009) 1H NMR based metabolomics of human amniotic fluid for the metabolic characterization of fetus malformations. J Proteome Res 8:4144–4150

    Article  PubMed  Google Scholar 

  12. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S, Bamforth F, Greiner R, Li L (2008) The human cerebrospinal fluid metabolome. J Chromatogr B 15:164–173

    Article  Google Scholar 

  13. Miccheli A, Tomassini A, Puccetti C, Valerio M, Peluso G, Tuccillo F, Calvani M, Manetti C, Conti F (2006) Metabolic profiling by 13C-NMR spectroscopy:[1,2–13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie 88:437–448

    Article  PubMed  CAS  Google Scholar 

  14. Coen M, Holmes E, Lindon JC, Nicholson JK (2008) NMR-based metabolic profiling and metabolomic approaches to problems in molecular toxicology. Chem Res Toxicol 21:9–27

    Article  PubMed  CAS  Google Scholar 

  15. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 5:714–717

    Article  Google Scholar 

  16. Logan TM, Murali N, Wang G, Jolivet C (1999) Application of a high-resolution supraconducting NMR probe in natural product structure determination. Magn Reson Chem 37:762–765

    Article  CAS  Google Scholar 

  17. Schroeder FC, Gronquist M (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem Int Ed Engl 43:7122–7131

    Article  Google Scholar 

  18. Serkova NJ, Freund AS, Brown JL, Kominsky DJ (2009) Use of the 1 mm microprobe for metabolic analysis on small volume biological samples. J Cell Mol Med 13:1933–1941

    Article  PubMed  Google Scholar 

  19. Schlotterbeck G, Ross A, Hochstrasser R, Senn H, Kühn T, Marek D, Schett O (2002) High-resolution capillary tube NMR. A miniaturized 5-microL high-sensitivity TXI probe for mass-limited samples, off-line LC NMR, and HT NMR. Anal Chem 74(17):4464–4471

    Article  PubMed  CAS  Google Scholar 

  20. Griffin JL, Nicholls AW, Keun HC, Mortishire-Smith RJ, Nicholson AW, Kuehn T (2002) Metabolic profiling of rodent biological fluids via 1H NMR spectroscopy using a 1 mm microliter probe. Analyst 127:582–584

    Article  PubMed  CAS  Google Scholar 

  21. Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, Royere D (2004) Efficacy of blastocyst transfer after implantation failure. RBM Online 9:630–636

    PubMed  CAS  Google Scholar 

  22. Gardner DK, Schoolcraft WB (1999) In vitro culture of human blastocysts. In: Jansen R, Mortimer D (eds) Towards reproductive certainty: infertility and genetics beyond 1999: the plenary proceedings of the 11th world congress on in vitro fertilization and human reproductive genetics. Parthenon Press, Pearl River, pp 378–388

    Google Scholar 

  23. Barantin L, Le Pape A, Akoka S (1997) A new method for absolute quantitation of MRS metabolites. Magn Reson Med 38:179–182

    Article  PubMed  CAS  Google Scholar 

  24. Silvestre V, Goupry S, Trierweiler M, Robins R, Akoka S (2001) Determination of substrate and product concentrations in lactic acid bacterial fermentations by proton NMR using the ERETIC method. Anal Chem 73:1862–1868

    Article  PubMed  CAS  Google Scholar 

  25. Miccheli AT, Miccheli A, Di Clemente R, Valerio M, Coluccia P, Bizzarri M, Conti F (2006) NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim Biophys Acta 11:1723–1731

    Article  Google Scholar 

  26. Maillet S, Vion-Dury J, Confort-Gouny S, Nicoli F, Lutz NW, Viout P, Cozzone PJ (1998) Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Protoc 3:123–134

    Article  CAS  Google Scholar 

  27. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz 1H and 1H–13C NMR spectroscopy of human blood plasma. Anal Chem 67:793–811

    Article  PubMed  CAS  Google Scholar 

  28. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526

    Article  PubMed  CAS  Google Scholar 

  29. Steer CV, Mills CL, Tan SL, Campbell S, Edwards R (1992) The cumulative embryo score: a predictive scoring technique to select the optimal number of embryos to transfer in a in vitro fertilization and embryo transfer program. Hum Reprod 7:17–119

    Article  Google Scholar 

  30. Sakkas D, Gardner DK (2005) Non invasive methods to assess embryo quality. Curr Opin Obstet Gynecol 3:283–288

    Article  Google Scholar 

  31. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, Lieberman BA, Leese HJ (2010) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 10:2319–2324

    Google Scholar 

  32. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, Burns DH, Lambalk CB (2008) Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod 23:1499–1504

    Article  PubMed  CAS  Google Scholar 

  33. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH (2008) Non invasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 90:77–83

    Article  PubMed  Google Scholar 

  34. Marhuenda-Egea FC, Martínez-Sabater E, Gonsálvez-Alvarez R, Lledó B, Ten J, Bernabeu R (2010) A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation. Fertil Steril 94:772–774

    Article  PubMed  Google Scholar 

  35. Marhuenda-Egea FC, Gonsálvez-Alvarez R, Martınez-Sabater E, Lledo B, Ten J, Bernabeu R (2011) Improving human embryos selection in IVF: non-invasive metabolomic and chemometric approach. Metabolomics 7:247–256

    Article  CAS  Google Scholar 

  36. Engelke UFH, Oostendorp M, Wevers RA (2007) NMR spectroscopy of body fluids as a metabolomics approach to inborn errors of metabolism. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabolomics. Elsevier, Amsterdam, pp 375–412

    Google Scholar 

  37. Grimes JH, O’Connell TM (2011) The application of micro-coil NMR probe technology to metabolomics of urine and serum. J Biomol NMR 49:297–305

    Article  PubMed  CAS  Google Scholar 

  38. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, Leese HJ (2002) Non invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 17:999–1005

    Article  PubMed  CAS  Google Scholar 

  39. Donnay I, Partridge RJ, Leese HJ (1999) Can embryo metabolism be used for selecting bovine embryos before transfer? Reprod Nutr Dev 39:523–533

    Article  PubMed  CAS  Google Scholar 

  40. Leese HJ, Sturmey RG, Baumann CG, McEvoy TG (2007) Embryo viability and metabolism: obeying the quiet rules. Hum Reprod 22:3047–3050

    Article  PubMed  Google Scholar 

  41. Seli E, Robert C, Sirard MA (2010) OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod 16:513–530

    Article  PubMed  CAS  Google Scholar 

  42. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH (2007) Non invasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88:1350–1357

    Article  PubMed  Google Scholar 

  43. Hardarson T, Ahlström A, Rogberg L, Botros L, Hillensjö T, Westlander G, Sakkas D, Wikland M (2012) Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod 27:89–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Doreen Raine for correcting the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydie Nadal-Desbarats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal-Desbarats, L., Veau, S., Blasco, H. et al. Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection?. Magn Reson Mater Phy 26, 193–202 (2013). https://doi.org/10.1007/s10334-012-0331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0331-x

Keywords

Navigation