Skip to main content
Log in

Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra

Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases.

Materials and methods

Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed.

Results

Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns.

Conclusion

These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T 1H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

1H SV-MRS:

Single voxel proton magnetic resonance spectroscopy

ACC:

Accuracy

ANN:

Artificial neural networks

CDSS:

Clinical decision support systems

CG2G:

Common grade II glial

G:

Geometric mean of recalls

HGM:

High grade malignant

KNN:

k-nearest neighbors

LDA:

Linear discriminant analysis

PI:

Peak integration

SNR:

Signal-to-noise ratio

SW:

Stepwise

TE:

Echo time

References

  1. García-Gómez JM, Luts J, Julià-Sapé M, Krooshof P, Tortajada S, Vicente Robledo J, Melssen W, Fuster-García E, Olier I, Postma G, Monleón D, Moreno-Torres À, Pujol J, Candiota AP, Martínez-Bisbal M, Suykens J, Buydens L, Celda B, Van Huffel S, Arús C, Robles M (2009) Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magn Reson Mater Phy 22: 5–18

    Article  Google Scholar 

  2. Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-Torres A, Vander Graaf M, Tate AR, Arús C, Van Huffel S (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31: 73–89

    Article  CAS  PubMed  Google Scholar 

  3. Devos A, Lukas L, Suykens JAK, Vanhamme L, Tate AR, Howe FA, Majos C, Moreno-Torres A, Van der Graaf M, Arús C, Van Huffel S (2004) Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson 170: 164–175

    Article  CAS  PubMed  Google Scholar 

  4. Tate AR, Majós C, Moreno A, Howe FA, Griffiths JR, Arús C (2003) Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 49: 29–36

    Article  CAS  PubMed  Google Scholar 

  5. Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, Van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabanas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Remy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19: 411–434

    Article  CAS  PubMed  Google Scholar 

  6. Celda B, Monleón D, Martínez-Bisbal MC, Esteve V, Martínez-Granados B, Piñero E, Ferrer R, Piquer J, Martí-Bonmatí L, Cervera J (2006) MRS as endogenous molecular imaging for brain and prostate tumors: FP6 project “eTUMOR”. Adv Exp Med Biol 587: 285–302

    Article  CAS  PubMed  Google Scholar 

  7. Laudadio T, Martínez-Bisbal MC, Celda B,Van Huffel S (2008) Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging. NMR Biomed 21: 311–321

    Article  CAS  PubMed  Google Scholar 

  8. Martínez-Bisbal M, Celda B, Martí-Bonmatí L, Ferrer P, Revert A, Piquer J, Mollá E, Arana E, Dosdá R (2002) Contribution of magnetic resonance spectroscopy to the classification of hogh glial tumours. Predictive value of macromolecules. Rev Neurol 34: 309–313

    PubMed  Google Scholar 

  9. Opstad K, Provencher S, Bell B, Griffiths J, Howe F (2009) Detection of elevated glutathione in meningiomas by quantitative in vivo 1H MRS. Magn Reson Med 49: 632–637

    Article  Google Scholar 

  10. Sundgren P, Nagesh V, Elias A, Tsien C, Junck L, Gomez~Hassan D, Lawrence T, Chenevert T, Rogers L, McKeever P, Cao Y (2003) Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J Magn Reson Imaging 29: 291–297

    Article  Google Scholar 

  11. Hattingen E, Raab P, Franz K, Lanfermann H, Setzer M, Gerlach R, Zanella F, Pilatus U (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50: 759–767

    Article  PubMed  Google Scholar 

  12. Server A, Josefsen R, Kulle B, Maehlen J, Schellhorn T, Gadmar, Kumar T, Haakonsen M, Langberg C, Nakstad P (2010) Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 51: 316–325

    Article  PubMed  Google Scholar 

  13. Theodoridis S, Koutroumbas K (2006) Pattern recognition. 3rd edn. Academic Press, San Diego

    Google Scholar 

  14. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  15. Duda RO, Hart PE, Stork DG (2000) Pattern classification. 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  16. Kim J, Chang K, Na DG, Song IC, Kim SJ, Kwon BJ, Han MH (2006) Comparison of 1.5T and 3T 1H-MR spectroscopy for human brain tumors. Korean J Radiol 7: 156–161

    Article  PubMed  Google Scholar 

  17. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45: 765–769

    Article  CAS  PubMed  Google Scholar 

  18. Roser W, Hagberg G, Mader I, Dellas S, Seelig J, Radue E, Steinbrich W (1997) Assignment of glial brain tumors in humans by in vivo 1H-magnetic resonance spectroscopy and multidimensional metabolic classification. Magn Reson Mater Phy 5: 179–183

    Article  CAS  Google Scholar 

  19. Berner, ES (eds) (2007) Clinical decision support systems: theory and practice. Springer, New York

    Google Scholar 

  20. Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, Tang PC (2001) Clinical decision support systems for the practice of evidence-based medicine. J Am Med Inform Assn 8: 527–534

    CAS  Google Scholar 

  21. González-Vélez H, Mier M, Julià-Sapé M, Arvanitis T, García-Gómez JM, Robles M, Lewis P, Dasmahapatra S, Dupplaw D, Peet A, Arús C, Celda B, Van Huffel S, Lluch-Ariet M (2009) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell 30: 191–202

    Article  Google Scholar 

  22. Sáez C, García-Gómez JM, Vicente J, Tortajada S, Esparza M, Navarro A, Fuster-Garcia E, Robles M, Martí-Bonmatí L, Arús C (2008) A generic decision support system featuring an assembled view of predictive models for magnetic Resonance and clinical data. In: ESMRMB 25th annual meeting, Valencia, 2–4. Springer

  23. García-Gómez JM, Tortajada S, Vidal C, Julia-Sape M, Luts J, Van Huffel S, Arús C, Robles M (2008) The influence of combining two echo times in automatic brain tumor classification by Magnetic Resonance Spectroscopy. NMR Biomed 21: 1112–1125

    Article  PubMed  Google Scholar 

  24. The eTUMOUR Consortium (2007) eTUMOUR: web accessible MR decision support system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data, VI framework programme, EC, http://www.etumour.net. Technical Report FP6-2002-LIFESCIHEALTH 503094

  25. Vander Graaf M, Juliá-Sapè M, Howe FA, Ziegler A, Majós C, Moreno-Torres A, Rijpkema M, Acosta D, Opstad KS, Van der Meulen Y, Arús C, Heerschap A (2008) MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed 21: 148–158

    Article  CAS  Google Scholar 

  26. Pérez-Ruiz A, Olier-Caparroso IA, Julià-Sapé M, Candiota AP, Arús C (2008) Brain tumor diagnosis with MRS: the single voxel INTERPRET decision-support system version 2.0. In: ESMRMB 25th annual meeting, Valencia, 2–4. Magn Reson Mater Phy

  27. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14: 26–30

    Article  CAS  PubMed  Google Scholar 

  28. Van den Boogaart A, Van Hecke P, Van Huffel S, Graveron-Demilly S, Van Ormondt D, de Beer R (1996) MRUI: a graphical user interface for accurate routine MRS data analysis. In: ESMRMB 13th annual meeting, Prague, 12–15. Springer

  29. Luts J, Poullet J, Garcia-Gomez J, Heerschap A, Robles M, Suykens J, Van Huffel S (2008) Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magn Reson Mater Phy 60: 88–98

    Google Scholar 

  30. Russell SJ, Norvig P (1995) Artificial intelligence: a modern approach. Prentice-Hall, Upper Saddle River

    Google Scholar 

  31. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour 1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed 20: 763–770

    Article  CAS  PubMed  Google Scholar 

  32. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenic 7: 179–188

    Google Scholar 

  33. Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of 14th international conference on machine learning, pp 179–186. Morgan Kaufmann

  34. Giraud-Carrier C (2000) A note on the utility of incremental learning. AI Commun 13: 215–223

    Google Scholar 

  35. Gonen O, Gruber S, Li B, Mlynrik V, Moser E (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. Am J Neuroradiol 22: 1727–1731

    CAS  PubMed  Google Scholar 

  36. Dydak U, Meier D, Lamerichs R, Boesiger P (2006) Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Am J Neuroradiol 27: 1441–1446

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elies Fuster-Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuster-Garcia, E., Navarro, C., Vicente, J. et al. Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magn Reson Mater Phy 24, 35–42 (2011). https://doi.org/10.1007/s10334-010-0241-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0241-8

Keywords

Navigation