, Volume 49, Issue 2, pp 101-115

Using extant patterns of dental variation to identify species in the primate fossil record: a case study of middle Eocene Omomys from the Bridger Basin, southwestern Wyoming

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Patterns of extant primate dental variation provide important data for interpreting taxonomic boundaries in fossil forms. Here I use dental data from several well-known living primates (as well as data from selected Eocene forms) to evaluate dental variation in Middle Eocene Omomys, the first North American fossil primate identified by paleontologists. Measurements were collected from a sample of 148 omomyid dental specimens recovered from Bridger B localities in the Bridger Basin, Wyoming. Most of these specimens have not previously been described. Nonmetric traits were also scored for this sample. Lower molar coefficients of variation range from 4.01 for M2 length (n = 80) to 6.73 for M3 talonid width (n = 57). All of the nonmetric traits scored exhibit less than 100% presence in the overall sample, including traits previously described as representative of Omomys (e.g., P4 metaconids present in 91%, n = 55; M2 pericones present in 80%, n = 15). Dental traits also vary in a set of spatially restricted localities from the same fossil horizon and in a separate, single fossil locality (DMNH 868, P4 metaconids present in 67%, n = 6). An increasing frequency in several premolar traits across time in these more restricted samples suggests an anagenetic change in Bridger B Omomys. However, this degree of morphological variability is consistent with that seen in extant primate species from single locations. Metric variation in this sample is comparable to that seen in other Eocene primates, such as new data presented here for the omomyid Arapahovius gazini from the Washakie Basin, southern Wyoming. Omomys metric variation is also comparable to that found in several samples of well-known extant primates from single localities (e.g., ring-tailed lemurs and gray–brown mouse lemurs). These metric data also correspond to the patterns of variability described in previously published studies of Omomys carteri. In sum, a single species interpretation (O. carteri) for this new Bridger B Omomys sample from southern Wyoming is affirmed, and this study illustrates the usefulness of dental data from extant primates for evaluating primate fossil samples.