Skip to main content
Log in

Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex

  • Review
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

The plant pathogenic Pseudomonas syringae species complex (Pssc) causes diseases of hundreds of species of monocots, herbaceous dicots and woody dicots worldwide. On annual plants, reports of disease caused by the Pssc have markedly increased in the last years. Hence, efforts are needed to mitigate the consequences of increasing disease outbreaks and to understand the underlying epidemiological factors. Here, we have reviewed the literature to highlight the salient features of the Pssc as pathogens of annual plant species and to underscore what remains unknown about the diseases they cause. The major points are as follows: (1) Since only the beginning of this century, 72 reports of disease outbreaks in 20 countries have been associated with the Pssc on over 40 annual plant species; (2) disease incidence caused by the Pssc on annual plants ranges from 50 to 100 % in epidemic years; (3) seed infestation is the main cause of long-distance pathogen dissemination; (4) foliar disease symptoms are very common on annual plants although the Pssc causes symptoms on fruits of bean, cantaloupe, cucumber, okra and tomato; (5) environmental factors such as rainfall and humidity have important roles in the Pssc disease epidemiology; (6) several new disease reports contradict the concept of the so-called pathovar, thereby raising the question of whether strains in the Pssc are mostly generalists rather than specialists as currently believed; and (7) disease control of annual plants is frequently based on approaches integrating biological, chemical and cultural measures with available plant resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, New York

    Google Scholar 

  • Alexander SA (1999) First report of copper-tolerant Pseudomonas syringae pv. tomato in Virginia. Plant Dis 83:964

    Article  Google Scholar 

  • Almeida IMG, Maciel KW, Neto JR, Beriam LOS (2013) Pseudomonas viridiflava in imported carrot seeds. Australas Plant Dis Note 8:17–19

    Article  Google Scholar 

  • Andrade CCL, Resende RS, Rodrigues FA, Ferraz HGM, Moreira WR, Oliviera JR, Mariano RLR (2013) Silicon reduces bacterial speck development on tomato leaves. Trop Plant Pathol 38:436–442

    Article  Google Scholar 

  • Ark PA (1940) Bacterial stalk rot of field corn caused by Phytomonas lapsa n. sp. Phytopathology 30:1

    CAS  Google Scholar 

  • Arnold DL, Lovell HC, Jackson RW, Mansfield JW (2011) Pseudomonas syringae pv. phaseolicola: from “has bean” to supermodel. Mol Plant Pathol 12:617–627

    Article  PubMed  Google Scholar 

  • Audy P, Braat CE, Saindon G, Huang HC, Laroche A (1996) A rapid and sensitive PCR-based assay for concurrent detection of bacteria causing common and halo blights in bean seed. Phytopathology 86:361–366

    Article  CAS  Google Scholar 

  • Aysan Y, Mirik M, Ala A, Sahin F, Cinar O (2003a) First report of Pseudomonas viridiflava on melon in Turkey. Plant Pathol 52:800

    Article  Google Scholar 

  • Aysan Y, Sahin S, Ulke G, Sahin F (2003b) Bacterial rot of lettuce caused by Pseudomonas cichorii in Turkey. Plant Pathol 52:782

    Article  Google Scholar 

  • Balaz J, Ilicic R, Masirevic S, Josic D, Kojic S (2014) First report of Pseudomonas syringae pv. syringae causing bacterial leaf spots of oil pumpkin (Cucurbita pepo L.) in Serbia. Plant Dis 98:684

    Article  Google Scholar 

  • Balestra GM, Heydari A, Ceccarelli D, Ovidi E, Quattricci A (2009) Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot 28:807–811

    Article  Google Scholar 

  • Bartoli C, Berge O, Monteil C, Guilbaud C, Balestra GM, Varvaro L, Jones C et al (2014) The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits. Environ Microbiol 16:2301–2315

    Article  CAS  PubMed  Google Scholar 

  • Bartoli C, Lamichhane JR, Berge O, Varvaro L, Morris CE (2015) Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. Mol Plant Pathol. doi:10.1111/mpp.12243

    Google Scholar 

  • Bashan Y, De-Bashan LE (2002) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829

    Article  CAS  Google Scholar 

  • Bashan Y, Okon Y (1981) Inhibition of seed germination and development of tomato plants in soil infested with Pseudomonas tomato. Ann Appl Biol 98:413–417

    Article  Google Scholar 

  • Basim H, Basim E, Yilmaz S, Dickstein ER, Jones JB (2004) An outbreak of bacterial speck caused by Pseudomonas syringae pv. tomato on tomato transplants grown in commercial seedling companies located in the western Mediterranean region of Turkey. Plant Dis 88:1050

    Article  Google Scholar 

  • Benlioglu K, Ozyilmaz U, Ertan D (2010) First report of bacterial blight caused by Pseudomonas syringae pv. pisi on pea in Turkey. Plant Dis 94:923

    Article  Google Scholar 

  • Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, Morris CE (2014) A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS ONE 9:e105547. doi:10.1371/journal.pone.0105547

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bhat NA (2009) Survival of Pseudomonas syringae pv. lachrymans—incitant of angular leaf spot of cucumber under temperate conditions of Kashmir Valley. Indian Phytopathology 62:429–434

    Google Scholar 

  • Bodilis J, Barray S (2006) Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. Microbiology 152:1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Bowden RL, Percich JA (1983) Etiology of bacterial leaf streak of wild rice. Phytopathology 73:640–645

    Article  Google Scholar 

  • Braun-Kiewnick A, Sands DC (2001) Pseudomonas. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria, 3rd edn. APS Press, St. Paul, MN, USA, pp 84–120

    Google Scholar 

  • Brown NA, Jamieson CO (1913) A bacterium causing a disease of sugar-beet and nasturtium leaves. J Agric Res 1:189–210

    Google Scholar 

  • Bull CT, du Toit LJ (2009) First report of bacterial blight on conventionally and organically grown arugula in Nevada caused by Pseudomonas syringae pv. alisalensis. Plant Dis 93:109

    Article  Google Scholar 

  • Bull CT, Rubio I (2011) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Australia. Plant Dis 95:1027

    Article  Google Scholar 

  • Bull CT, Manceau C, Lydon J, Kong H, Vinatzer BA, Fischer-Le SM (2010a) Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koikeand Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch. Grimont & Gri. Syst Appl Microbiol 33:105–115

    Article  Google Scholar 

  • Bull CT, Mauzey SJ, Koike ST (2010b) First report of bacterial blight of Brussels sprouts (Brassica oleracea var. gemmifera) caused by Pseudomonas cannabina pv. alisalensis in California. Plant Dis 94:1375

    Article  Google Scholar 

  • Bull CT, Ortiz-Lytle MC, Ibarra AG, du Toit LJ, Reynolds G (2015) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Minnesota on arugula (Eruca vesicaria subsp. sativa). Plant Dis 99:415

    Article  Google Scholar 

  • Buonaurio R, Scortichini M (1994) Pseudomonas syringae pv. syringae on pepper seedlings in Italy. Plant Pathol 43:216–219

    Article  Google Scholar 

  • Cai R, Yan S, Liu H, Leman S, Vinatzer BA (2011) Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. tomato and its close relatives as a model. Infect Genet Evol 11:1738–1751

    Article  PubMed  Google Scholar 

  • Cambra MA, Palacio-Bielsa A, Lopez MM (2004) Borage (Borago officinalis) is a new host of Pseudomonas cichorii in the Ebro Valley of Spain. Plant Dis 88:769

    Article  Google Scholar 

  • Casewell M, Friis C, Marco E, McMullin P, Phillips I (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161

    Article  CAS  PubMed  Google Scholar 

  • Cho MS, Jeon YH, Kang MJ, Ahn HI, Baek HJ, Na YW, Choi YM et al (2009) Sensitive and specific detection of phaseolotoxigenic and nontoxigenic strains of Pseudomonas syringae pv. phaseolicola by TaqMan real-time PCR using site-specific recombinase gene sequences. Microbiol Res 165:565–572

    Google Scholar 

  • Cintas NA, Bull CT, Koike ST, Bouzar H (2001) A new bacterial leaf spot disease of broccolini, caused by Pseudomonas syringae pathovar maculicola, in California. Plant Dis 85:1207

    Article  Google Scholar 

  • Cintas NA, Koike ST, Bull CT (2002) A new pathovar, Pseudomonas syringae pv. alisalensis pv. nov., proposed for the causal agent of bacterial blight of broccoli and broccoli raab. Plant Dis 86:992–998

    Article  Google Scholar 

  • Conlin KC, McCarter SM (1983) Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck. Plant Dis 67:639–644

    Article  CAS  Google Scholar 

  • Cooksey DA (1988) Reduction of infection by Pseudomonas syringae pv. tomato using a nonpathogenic, copper-resistant strain combined with a copper bactericide. Phytopathology 78:601–603

    Article  CAS  Google Scholar 

  • Cruz L, Cruz J, Eloy M, Oliveira H, Vaz H, Tenreiro R (2010) First report of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato Race 1 in Portugal. Plant Dis 94:1504

    Article  Google Scholar 

  • Cuppels DA, Elmhirst J (1999) Disease development and changes in the natural Pseudomonas syringae pv. tomato populations on field tomato plants. Plant Dis 83:759–764

    Article  Google Scholar 

  • Cuppels DA, Moore RA, Morris VL (1990) Construction and use of a nonradioactive DNA hybridization probe for detection of Pseudomonas syringae pv. tomato on tomato plants. Appl Environ Microbiol 56:1743–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cupples DA (1983) Isolation and characterization of phages useful for identifying Pseudomonas syringae pv. tomato. Phytopathology 73:1376–1381

    Article  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Davis JR, English H (1969) Factors related to the development of bacterial canker in peach. Phytopathology 59:588–595

    Google Scholar 

  • Day L (2013) Proteins from land plants—potential resources for human nutrition and food security. Trend Food Sci Tech 32:25–42

    Article  CAS  Google Scholar 

  • de Leon L, Siverio F, Lopez MM, Rodrígues A (2011) Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant Dis 95:1328–1338

    Article  Google Scholar 

  • Dennis JI, Wilson J (1997) Disease control in coriander and other spice seeds. Rural Industries Research and Development Corp. (RIRDC), Research Paper no. 97, Barton, ACT2600, Australia, p 41

  • Destéfano SAL, Rodrigues LMR, Beriam LOS, Patricio FRA, Thomaziello RA, Rodrigues-Neto J (2010) Bacterial leaf spot of coffee caused by Pseudomonas syringae pv. tabaci in Brazil. Plant Pathol 59:1162–1163

    Article  Google Scholar 

  • Dutta B, Ingram T, Gitaitis RD, Langston DB, Brenneman T, Webster TM, Davis RF (2014) First report of bacterial blight of sugar beet caused by Pseudomonas syringae pv. aptata in Georgia, USA. Plant Dis 98:1423

    Article  Google Scholar 

  • Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA, Schroth MN (1980) International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol 142:153–158

    Google Scholar 

  • Elliott C (1920) Halo-blight of oats. J Agric Res 19:139–172

    Google Scholar 

  • Elliott C (1927) Bacterial stripe blight of oats. J Agric Res 35:811–824

    Google Scholar 

  • Elvira-Recuenco M, Taylor JD (2001) Resistance to bacterial blight (Pseudomonas syringae pv. pisi) in Spanish pea (Pisum sativum) landraces. Euphytica 118:305–311

    Article  Google Scholar 

  • Fanelli V, Cariddi C, Finetti-Sialer M (2007) Selective detection of Pseudomonas syringae pv. tomato using dot blot hybridization and real-time PCR. Plant Pathol 56:683–691

    Article  CAS  Google Scholar 

  • Fatmi MB, Collmer A, Sante Iacobellis N, Mansfield JW, Murillo J, Schaad NW, Ullrich M (eds) (2008) Pseudomonas syringae pathovars and related pathogens—identification, epidemiology, and genomics. Dordrecht, Springer, p 433

    Google Scholar 

  • Filho RL, de Souza RM, Ferreira A, Quecine MC, Alves E, de Azevedo JL (2013) Biocontrol activity of Bacillus against a GFP-marked Pseudomonas syringae pv. tomato on tomato phylloplane. Australas Plant Pathol 42:643–651

    Article  Google Scholar 

  • Flaherty JE, Jones JB, Harbaugh BK, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35:882–884

    Google Scholar 

  • Gappa-Adachi R, Morita Y, Shimomoto Y, Takeuchi S (2014) Bacterial leaf blight of sweet pepper (Capsicum annuum) caused by Pseudomonas cichorii in Japan. J Gen Plant Pathol 80:103–107

    Article  CAS  Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PA (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi A, Bertetti D, Scortichini S, Gullino ML (2005) First report of bacterial leaf spot caused by Pseudomonas cichorii on Phlox paniculata in Italy. Plant Dis 89:912

    Article  Google Scholar 

  • Garibaldi A, Minuto A, Scortichini M, Gullino ML (2007) First report of syringae leaf spot caused by Pseudomonas syringae pv. syringae on tomato in Italy. Plant Dis 91:1518

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Moretti C, Gullino ML (2009) First report of leaf spot caused by Pseudomonas cichorii on Coreopsis lanceolata in Italy. Plant Dis 93:967

    Article  Google Scholar 

  • Garrett KA, Schwartz HF (1998) Epiphytic Pseudomonas syringae on dry beans treated with copper-based bactericides. Plant Dis 82:30–35

    Article  Google Scholar 

  • Gaudet DA, Kokko EG (1986) Seedling disease of sorghum grown in southern Alberta caused by seedborne Pseudomonas syringae pv. syringae. Can J Plant Pathol 8:208–217

    Article  Google Scholar 

  • Getz S, Stephens CT, Fulbright DW (1983) Influence of developmental stage on susceptibility of tomato fruit to Pseudomonas syringae pv. tomato. Phytopathology 73:36–38

    Article  Google Scholar 

  • Gitaitis RD, Baird RE, Beaver RW, Summer DR, Gay JD, Smittle DA (1991) Bacterial blight of sweet onion caused by Pseudomonas viridiflava in Vidalia, Georgia. Plant Dis 75:1180–1182

    Article  Google Scholar 

  • Gitaitis RD, Mullis S, Lewis K, Langston D, Watson AK, Sanders H, Torrance R (2012) First report of a new disease of onion in Georgia caused by a nonfluorescent Pseudomonas species. Plant Dis 96:285

    Article  Google Scholar 

  • Godfrey SAC, Marshall JW (2002) Identification of cold-tolerant Pseudomonas viridiflava and P. marginalis causing severe carrot postharvest bacterial soft rot during refrigerated export from New Zealand. Plant Pathol 51:155–162

    Article  Google Scholar 

  • Goumas DE, Chatzaki AK (1998) Characterization and host range evaluation of Pseudomonas viridiflava from melon, blite, tomato, chrysanthemum and eggplant. Eur J Plant Pathol 104:181–188

    Article  Google Scholar 

  • Grimault V, Germain R, Politikou A. (2012) Detection of Pseudomonas syringae pv. pisi on Pisum sativum (pea) seed. International Seed Testing Association (ISTA) Zürichstr, Switzerland, p 12

  • Gross M, Rudolph K (1987) Demonstration of levan and alginate in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae pv. phaseolicola. J Phytopathol 120:9–19

    Article  CAS  Google Scholar 

  • Gu YQ, Martin GB (1998) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Philos Trans R Soc B 353:1455–1461

    Article  CAS  Google Scholar 

  • Gupta M, Bharat N, Chauhan A, Vikram A (2013) First report of bacterial leaf spot of coriander caused by Pseudomonas syringae pv. coriandricola in India. Plant Dis 97:418

    Article  Google Scholar 

  • Harighi B (2007) Angular leaf spot of cucumber caused by Pseudomonas syringae pv. lachrymans in Kurdistan. Plant Dis 91:769

    Article  Google Scholar 

  • Harris DE (1964) Bacterial blight of peas. J Agric 62:276–280

    Google Scholar 

  • Hellmers E (1955) Bacterial leaf spot of African marigold (Tagetes erecta) caused by Pseudomonas tagetis sp. n. Acta Agric Scand 5:185–200

    Article  Google Scholar 

  • Hendson M, Hildebrand DC, Schroth N (1992) Relatedness of Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. maculicola, and Pseudomonas syringae pv. antirrhini. J Appl Bacteriol 73:455–464

    Article  CAS  Google Scholar 

  • Hert AP (2007) Evaluation of bacteriocins in Xanthomonas perforans for use in biological control of Xanthomonas euvesicatoria. PhD thesis, University of Florida, Gainesville

  • Heydari A, Khodakaramian G, Zafari D (2014) Occurrence, genetic diversity and pathogenicity characteristics of Pseudomonas viridiflava inducing alfalfa bacterial wilt and crown root rot disease in Iran. Eur J Plant Pathol 139:299–307

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter JE, Cigna JA (1981) Bacterial blight incited in parsnip by Pseudomonas marginalis and Pseudomonas viridiflava. Phytopathology 71:1238–1241

    Google Scholar 

  • Ibrahim Y, Molan Y (2009) Occurrence of bacterial leaf spot disease on lettuce caused by Pseudomonas viridiflava in the Kingdom of Saudi Arabia. Plant Pathol 59:402

    Article  Google Scholar 

  • Ignjatov M, Gvozdanović-Varga J, Milošević D, Nikolić Z, Ivanović Z, Popović T (2014) First report of bacterial leaf spot of chard (Beta vulgaris subsp. cicla) caused by Pseudomonas syringae pv. syringae in Serbia. Plant Dis 99:273. doi:10.1094/PDIS-10-14-1097-PDN

    Google Scholar 

  • Ikene I, Grondeau C, Bureau C, Samson R (2003) Pseudomonas leek blight: study of seed transmission. In: Iacobellis NS, Collmer A, Hutcheson SW et al (eds) Pseudomonas syringae pathovars and related pathogens. Springer, Netherlands, pp 93–95

    Chapter  Google Scholar 

  • Inoue T, Kajihara H, Muramoto K, Yoshioka R, Sawada H (2013) Fruit rot, a new symptom of okra bacterial leaf blight, caused by Pseudomonas cichorii (in Japanese with English summary). Jpn J Phytopathol 79:99–104

    Article  Google Scholar 

  • Jacobsen B (1997) Role of plant pathology in integrated pest management. Annu Rev Phytopathol 35:373–391

    Article  CAS  PubMed  Google Scholar 

  • Jagger IC (1921) Bacterial leafspot disease of celery. J Agric Res 21:185–188

    Google Scholar 

  • Jardine DJ, Stephens CT (1987) A predictive system for timing chemical applications to control Pseudomonas syringae pv. tomato, causal agent of bacterial speck. Phytopathology 77:823–827

    Article  Google Scholar 

  • Jardini TM, Koike ST, Bull CT (2012) First report of bacterial streak of fennel (Foeniculum vulgare) in California caused by Pseudomonas syringae pv. apii. Plant Dis 96:285

    Article  Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 36:358–367

    Article  Google Scholar 

  • Johnson J (1923) A bacterial leafspot of tobacco. J Agric Res 23:481–492

    Google Scholar 

  • Jones JB, Chase AR, Raju BC, Miller JW (1986) Bacterial leaf spot of Hibiscus rosa-sinensis incited by Pseudomonas syringae pv. hibisci. Plant Dis 70:441–443

    Article  Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  • Jones JB, Vallad GE, Iriarte FB, Obradovic A, Wernsing MH, Jackson LE, Balogh B et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2:208–214

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He SY (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100:3519–3524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamura E (1934) Bacterial leaf spot of sunflower. Ann Phytopathol Soc Jpn 4:25–28

    Article  Google Scholar 

  • Keinath AP, Wechter WP, Smith JP (2006) First report of bacterial leaf spot on leafy brassica greens caused by Pseudomonas syringae pv. maculicola in South Carolina. Plant Dis 90:683

    Article  Google Scholar 

  • Kitazawa Y, Netsu O, Nijo T, Yoshida T, Miyazaki A, Hara S, Okano Y et al (2014) First report of bacterial leaf blight on cosmos (Cosmos bipinnatus Cav.) caused by Pseudomonas cichorii in Japan. J Gen Plant Pathol 80:499–503

    Article  Google Scholar 

  • Knoche KK, Parke JL, Durbin RD (1987) Root colonization by Pseudomonas syringae pv. tabaci. 3rd International Working Group on Pseudomonas syringae pathovars Lisbon, Portugal, pp 1–4

  • Koike ST, Bull CT (2006) First report of bacterial leaf spot of Italian dandelion (Cichorium intybus) caused by a Pseudomonas syringae pathovar in California. Plant Dis 90:245

    Article  Google Scholar 

  • Koike ST, Azad HR, Cooksey DC (2002) First report of bacterial leaf spot of spinach caused by a Pseudomonas syringae pathovar in California. Plant Dis 86:921

    Article  Google Scholar 

  • Koike ST, Henderson DM, Bull CT, Goldman PH, Lewelle RT (2003) first report of bacterial leaf spot of Swiss chard caused by Pseudomonas syringae pv. aptata in California. Plant Dis 87:1397

    Article  Google Scholar 

  • Koike ST, Kammeijer K, Bull CT, O’Brien D (2006) First report of bacterial blight of romanesco cauliflower (Brassica oleracea var. botrytis) caused by Pseudomonas syringae pv. alisalensis in California. Plant Dis 90:1511

    Article  Google Scholar 

  • Koike ST, Kammeijer K, Bull CT, O’Brien D (2007) First report of bacterial blight of rutabaga (Brassica napus var. napobrassica) caused by Pseudomonas syringae pv. alisalensis in California. Plant Dis 91:112

    Article  Google Scholar 

  • Kritzman G, Zutra L (1983) Survival of Pseudomonas syringae pv. lachrymans in soil, plant debris and in the rhizosphere of non host plants. Phytoparasitica 11:99–108

    Article  Google Scholar 

  • Kubo H, Nakayama S, Shinohara H, Negishi H, Suyama K (2009) Occurrence of bacterial leaf spot disease caused by Pseudomonas cichorii on Coreopsis lanceolata L. (abstract in Japanese). Jpn J Phytopathol 75:53

    Article  Google Scholar 

  • Kunkeaw S, Tan S, Coaker G (2010) Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Mol Plant Microbe Interact 23:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kuwata H (1985) Pseudomonas syringae pv. oryzae pv. nov., causal agent of bacterial halo blight of rice. Ann Phytopathol Soc Jpn 51:212–218

    Article  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M et al (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane JR (2014) Xanthomonas arboricola diseases of stone fruit, almond and walnut trees: progress toward understanding and management. Plant Dis 98:1600–1610

    Article  Google Scholar 

  • Lamichhane JR, Bartoli C (2015) Plant pathogenic bacteria in open irrigation systems: what risk for crop health? Plant Pathol. doi:10.1111/ppa.12371

    Google Scholar 

  • Lamichhane JR, Kshetri MB, Mazzaglia A, Varvaro L, Balestra GM (2010) Bacterial speck caused by Pseudomonas syringae pv. tomato race 0: first report in Nepal. Plant Pathol 59:401

    Article  Google Scholar 

  • Lamichhane JR, Balestra GM, Varvaro L (2011) Severe outbreaks of bacterial canker caused by Clavibacter michiganensis subsp. michiganensis on tomato in Central Italy. Plant Dis 95:221

    Article  Google Scholar 

  • Lamichhane JR, Varvaro L, Parisi L, Audergon J-M, Morris CE (2014) Disease and frost damage of woody plants caused by Pseudomonas syringe: seeing the forest for the trees. Adv Agron 126:235–295

    Article  Google Scholar 

  • Langston DB, Sanders FH, Brock JH, Gitaitis RD, Flanders JT, Beard GH (2003) First report of a field outbreak of a bacterial leaf spot of cantaloupe and squash caused by Pseudomonas syringae pv. syringae in Georgia. Plant Dis 87:600

    Article  Google Scholar 

  • Laue BE, Steele H, Green S (2014) Survival, cold tolerance and seasonality of infection of European horse chestnut (Aesculus hippocastanum) by Pseudomonas syringae pv. aesculi. Plant Pathol 63:1417–1425

    Article  Google Scholar 

  • Lawton MB, MacNeill BH (1986) Occurrence of race 1 of Pseudomonas syringae pv. tomato on Weld tomato in southwestern Ontario. Can J Plant Pathol 8:85–88

    Article  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A (2009) The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10:767–775

    Article  CAS  PubMed  Google Scholar 

  • Lipsitch M, Singer RS, Levin BR (2002) Antibiotics in agriculture: when is it time to close the barn door? Proc Natl Acad Sci USA 99:5572–5574

    Article  CAS  Google Scholar 

  • Liu T (1998) Biological control with tomato bacterial spot with hrp mutants of Xanthomonas campestris pv. vesicatoria. PhD thesis, University of Florida, Gainesville

  • Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB, Shoemaker PB, Sahin F et al (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  Google Scholar 

  • Mabagala RB, Saettler AW (1992) Pseudomonas syringae pv. phaseolicola populations and halo blight severity in beans grown alone or intercropped with maize in northern Tanzania. Plant Dis 76:687–692

    Article  Google Scholar 

  • Macagnan D, Romeiro RS, Macedo DM, Schurt DA (2007) Podridão em pós-colheita de batata (Solanum tuberosum) incitada por Pseudomonas viridiflava. Summa Phytopathol 33:307–308

    Article  Google Scholar 

  • Malkoff K (1906) Weitere Untersuchungen über die Bakterienkrankheit auf Sesamum orientale. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten 16:664–666

    Google Scholar 

  • Malvick DK, Moore LW (1988) Population dynamics and diversity of Pseudomonas syringae on maple and pear trees and associated grasses. Phytopathology 78:1366–1370

    Article  Google Scholar 

  • Mansilla AY, Albertengo L, Rodríguez MS, Debbaudt A, Zúñiga A, Casalongué CA (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966

    Article  CAS  PubMed  Google Scholar 

  • Maringoni AC, Theodoro GF, Ming LC, Cardoso JC, Kurozawa C (2003) First report of Pseudomonas cichorii on turmeric (Curcuma longa) in Brazil. Plant Pathol 52:794

    Article  Google Scholar 

  • Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanz A, Palomo JL, Caminero C (2009) First report of bacterial blight caused by Pseudomonas syringae pv. syringae on common vetch in Spain. Plant Dis 93:1348

    Article  Google Scholar 

  • Martin-Sanz A, Palomo JL, de la Vega MP, Caminero C (2010) First report of bacterial blight caused by Pseudomonas viridiflava on pea in Spain. Plant Dis 94:128

    Article  Google Scholar 

  • Mauzey SJ, Koike ST, Bull CT (2011) First report of bacterial blight of cabbage (Brassica oleracea var. capitata) caused by Pseudomonas cannabina pv. alisalensis in California. Plant Dis 95:71

    Article  Google Scholar 

  • McCarter SM, Jones JB, Gitaitis RD, Smitley DR (1983) Survival of Pseudomonas syringae pathovar tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology 73:1393–1398

    Article  Google Scholar 

  • McCulloch L (1911) A spot disease of cauliflower. Bureau of Plant Industry, United States Department of Agriculture, Bulletin 225:1–15

    Google Scholar 

  • McCulloch L (1920) Basal glume rot of wheat. J Agric Res 18:543–552

    Google Scholar 

  • Menkissoglu O, Lindow SE (1991) Chemical form of copper on leaves in relation to the bactericidal activity of cupric hydroxide deposits on leaves. Phytopathology 81:1263–1270

    Article  CAS  Google Scholar 

  • Minuto A, Minuto G, Martini P, Odasso M, Biondi E, Mucini S, Scortichini M (2008) First report of Pseudomonas viridiflava in basil seedlings and plants in soilless crop in Italy. Australas Plant Dis Note 3:165

    Article  Google Scholar 

  • Mirik M, Aysan Y, Cetinkaya-Yildiz R, Sahin F, Saygili H (2004) Watermelon as a new host of Pseudomonas viridiflava, causal agent of leaf and stem necrosis, discovered in Turkey. Plant Dis 88:907

    Article  Google Scholar 

  • Monteil CL, Guilbaud C, Glaux C, Lafolie F, Soubeyrand S, Morris CE (2012) Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack. Environ Microbiol 14:2099–2112

    Article  PubMed  Google Scholar 

  • Monteil CL, Bardin M, Morris CE (2014) Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME J 8:2290–2304

    Article  PubMed  Google Scholar 

  • Moretti C, Sequino S, Buonaurio R (2005) First report of leaf necrosis caused by Pseudomonas viridiflava on melon seedlings in Italy. Plant Dis 89:109

    Article  Google Scholar 

  • Moretti C, Fakhr R, Buonaurio R (2012) Calendula officinalis: a new natural host of Pseudomonas viridiflava in Italy. Plant Dis 96:285

    Article  Google Scholar 

  • Morris CE, Monier J-M (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Pitrat M (1998) La bactériose du melon: connaissances acquises et travaux en cours. PHM Rev Hortic 393:44–47

    Google Scholar 

  • Morris CE, Glaux C, Latour X, Gardan L, Samson R, Pitrat M (2000) The relationship of host range, physiology, and genotype to virulence on cantaloupe in Pseudomonas syringae from cantaloupe blight epidemics in France. Phytopathology 90:636–646

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffiére A, Yan S et al (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104

    Article  CAS  PubMed  Google Scholar 

  • Mukoo H (1955) On the bacterial blacknode of barley and wheat and its causal bacteria. Jubilee Publication in Commemoration of the Sixtieth Birthdays of Prof. Yoshihito Tochinai and Prof. Taikishi Fukushi, Sapporo, Japan, pp 153–157

  • Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530

    CAS  PubMed  Google Scholar 

  • Myung IS, Kim JW, An SH, Lee JH, Kim SK, Lee Y-K, Kim WG (2009) Wildfire of soybean caused by Pseudomonas syringae pv. tabaci, a new disease in Korea. Plant Dis 93:1214

    Article  Google Scholar 

  • Myung IS, Lee YK, Lee SW, Kim WG, Shim HS, Ra D-S (2010) A new disease, bacterial leaf spot of rape, caused by atypical Pseudomonas viridiflava in South Korea. Plant Dis 94:271

    Article  Google Scholar 

  • Myung IS, Joa JH, Shim HS (2011) Bacterial leaf spot of onion caused by Pseudomonas syringae pv. porri, a new disease in Korea. Plant Dis 95:1311

    Article  Google Scholar 

  • Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8:361–368

    Article  CAS  PubMed  Google Scholar 

  • Obradovic A, Arsenijevic M (2002) First report of a wilt and stem rot of muskmelon and watermelon transplants incited by Pseudomonas cichorii in Serbia. Plant Dis 86:443

    Article  Google Scholar 

  • Osman SF, Fett WF, Fishman ML (1986) Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. J Bacteriol 166:66–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozaki K, Kimura T, Matsumoto K (1998) Pseudomonas syringae pv. spinaceae pv. nov., the causal agent of bacterial leaf spot of spinach in Japan. Ann Phytopathol Soc Jpn 64:264–269

    Article  CAS  Google Scholar 

  • Parashar RD, Leben C (1972) Detection of Pseudomonas glycinea in soybean seed lots. Phytopathology 62:1075–1077

    Article  Google Scholar 

  • Parkinson N, Bryant R, Bew J, Elphinstone J (2011) Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathol 60:338–344

    Article  CAS  Google Scholar 

  • Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243

    Article  CAS  PubMed  Google Scholar 

  • Pernezny K, Raid RN (2001) Occurrence of bacterial leaf spot of escarole caused by Pseudomonas cichorii in the Everglades agricultural area of southern Florida. Plant Dis 85:1208

    Article  Google Scholar 

  • Pernezny K, Kudela V, Kokoskova B, Hladka I (1995) Bacterial diseases of tomato in the Czech and Slovak Republics and lack of streptomycin resistance among copper-tolerant bacterial strains. Crop Prot 14:267–270

    Article  Google Scholar 

  • Pitblado RE, MacNeill BH (1983) Genetic basis of resistance to Pseudomonas syringae pv. tomato in Weld tomatoes. Can J Plant Pathol 5:251–255

    Article  Google Scholar 

  • Pitblado RE, MacNeill BH, Kerr EA (1983) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. Can J Plant Pathol 6:48–53

    Article  Google Scholar 

  • Pohronezny K, Larsen PO, Emmatty DA, Farley JD (1977a) Field studies of yield losses in pickling cucumber due to angular leaf spot. Plant Dis Rep 61:386–390

    Google Scholar 

  • Pohronezny K, Leben C, Larsen PO (1977b) Systemic invasion of cucumber by Pseudomonas lachrymans. Phytopatology 67:730–734

    Article  Google Scholar 

  • Pohronezny K, Larsen PO, Leben C (1978) Observations on cucumber fruit invasion by Pseudomonas lachrymans. Plant Dis Rep 62:306–309

    Google Scholar 

  • Pohronezny K, Sommerfeld ML, Raid RN (1994) Streptomycin resistance and copper tolerance among strains of Pseudomonas cichorii in celery seedbeds. Plant Dis 78:150–153

    Article  CAS  Google Scholar 

  • Polizzi G, Castello I, Parlavecchio G, Cirvilleri G (2005) First report of bacterial blight of Strelitzia augusta caused by Pseudomonas syringae pv. lachrymans. Plant Dis 89:1010

    Article  Google Scholar 

  • Popović T, Ivanović Ž, Ignjatov M, Milošević D (2015a) First report of Pseudomonas syringae pv. coriandricola causing bacterial leaf spot on carrot, parsley and parsnip in Serbia. Plant Dis 99:416

    Article  Google Scholar 

  • Popović T, Ivanović Ž, Trkulja N, Milosavljević A, Ignjatov M (2015b) First report of Pseudomonas syringae pv. syringae on pea (Pisum sativum) in Serbia. Plant Dis 99:724. doi:10.1094/PDIS-11-14-1212-PDN

    Article  Google Scholar 

  • Preston GM (2000) Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol 1:263–275

    Article  CAS  PubMed  Google Scholar 

  • Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6

    Article  Google Scholar 

  • Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  • Reddy CS, Godlkin J (1923) A bacterial disease of bromegrass. Phytopathology 13:75–86

    Google Scholar 

  • Refshauge SJ, Nayudu M, Vranjic J, Bock CH (2010) Infection and dispersal processes of Pseudomonas syringae pv. coriandricola on coriander. Phytopathol Mediterr 49:42–50

    Google Scholar 

  • Reid WD (1938) Grease-spot of passion-fruit. New Zeal J Sci Technol A20:260–265

    Google Scholar 

  • Rennie WJ (1998) Seedborne diseases. In: Jones DG (ed) The epidemiology of plant diseases. Kluwer, Dordrecht, pp 295–305

    Chapter  Google Scholar 

  • Robbs CF (1956) Uma nova doença bacteriana do mamoeiro (Carica papaya L.). Rev Soc Bras Agron 12:73–76

    Google Scholar 

  • Roberts SJ, Parkinson N (2014) A bacterial leaf spot of aquilegia caused by Pseudomonas syringae. New Dis Rep 29:4

    Article  Google Scholar 

  • Romero AM, Kousik CS, Ritchie DF (2001) Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis 85:189–194

    Article  Google Scholar 

  • Ronald PC, Salmeron JM, Carland FM, Staskawicz BJ (1992) The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J Bacteriol 174:1604–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolph KWE, Gross M, Neugebauer M, Hokawat S, Zachowski A, Wydra K, Klement Z (1989) Extracellular polysaccharides as determinants of leaf spot diseases caused by pseudomonads and xanthomonads. In: Graniti A, Durbin RD, Ballio A (eds) Phytotoxins and plant pathogenesis. Springer, Berlin, pp 177–218

    Chapter  Google Scholar 

  • Sahin F (2001) Severe outbreak of bacterial speck, caused by Pseudomonas syringae pv. tomato, on field-grown tomatoes in eastern Anatolia region of Turkey. Plant Pathol 50:799

    Article  Google Scholar 

  • Samson R, Shafik H, Benjama A, Gardan L (1998) Description of the bacterium causing blight of leek as Pseudomonas syringae pv. porri (pv. nov.). Phytopathology 88:844–850

    Article  CAS  PubMed  Google Scholar 

  • Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:1999–2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar SF, Gordon JS, Martin GB, Guttman DS (2006) Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174:1041–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarris PF, Karri IV, Goumas DE (2010) First report of Pseudomonas syringae pv. alisalensis causing bacterial blight of arugula (Eruca vesicaria subsp. sativa) in Greece. New Dis Rep 22:22

    Article  Google Scholar 

  • Sarris PF, Trantas EA, Mpalantinaki E, Ververidis FN, Goumas SE, Goumas DE (2012) First report of Pseudomonas viridiflava causing a bacterial blight of artichoke bract leaves. Plant Dis 96:1223

    Article  Google Scholar 

  • Sarris PF, Trantas EA, Baltrus DA, Bull CT, Wechter WP, Yan S, Ververidis F et al (2013) Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 8:e59366. doi:10.1371/journal.pone.0059366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato M, Watanabe K, Sato Y (2001) Pseudomonas syringae pv. solidagae pv. nov., the causal agent of bacterial leaf spot of tall goldenrod Solidago altissima L. J Gen Plant Pathol 67:303–308

    Article  Google Scholar 

  • Schneider RW, Grogan RG (1977) Bacterial speck of tomato: sources of inoculum and establishment of a resident population. Phytopathology 67:388–394

    Article  Google Scholar 

  • Schofield DA, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2012) Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers. Appl Environ Microbiol 78:3592–3598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scortichini M (2002) Bacterial canker and decline of European hazelnut. Plant Dis 86:704–709

    Article  Google Scholar 

  • Sedighian N, Shams-Bakhsh M, Osdaghi E, Khodaygan P (2014) Etiology and host range of bacterial leaf blight and necrosis of squash and muskmelon in Iran. J Plant Pathol 96:507–514

    Google Scholar 

  • Shenge KC, Mabagala RB, Mortensen CN, Stephan D, Wydra K (2007) First report of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato in Tanzania. Plant Dis 91:462

    Article  Google Scholar 

  • Shila SJ, Islam MR, Ahmed NN, Dastogeer KMG, Meah MB (2013) Detection of Pseudomonas syringae pv. lachrymans associated with the seeds of cucurbits. Uni J Agric Res 1:1–8

    Google Scholar 

  • Smith EF, Bryan MK (1915) Angular leaf-spot of cucumbers. J Agric Res 5:465–476

    Google Scholar 

  • Sotirova V, Bogatsevska N, Stamova L (1994) Sources of resistance to bacterial diseases in tomato wild species. Acta Hortic 376:353–359

    Article  Google Scholar 

  • Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230–2235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Walling LL (1994) Pto3 and Pto4: Novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv. tomato. Theor Appl Genet 89:879–884

    CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Strayer A, Garcia-Maruniak A, Sun X, Schubert T, Sutton B (2012) First report of Pseudomonas cichorii causing leaf spot of stevia detected in Florida. Plant Dis 96:1690

    Article  Google Scholar 

  • Suenaga H, Kawaguchi A, Sasaki S, Inoue K, Nasu H (2006) Bacterial rot of endive (Cichorium endivia L.), a new disease caused by Pseudomonas cichorii (abstract in Japanese). Jpn J Phytopathol 72:77

    Google Scholar 

  • Takahashi F, Ogiso H, Fujinaga M, Ishiyama Y, Inoue Y, Shirakawa T, Takikawa Y (2013) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J Gen Plant Pathol 79:260–269

    Article  CAS  Google Scholar 

  • Takikawa Y, Takahashi F (2014) Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. J Gen Plant Pathol 80:466–474

    Article  Google Scholar 

  • Takimoto S (1920) On the bacterial leaf-spot of Antirrhinum majus L. Bot Mag 34:253–257

    Article  Google Scholar 

  • Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M et al (2010) Playing the “Harp”: evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol 48:347–370

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Phelps K, Dudley CL (1979) Epidemiology and strategy for the control of halo-blight of beans. Ann Appl Biol 93:167–172

    Article  Google Scholar 

  • Taylor JD, Teverson DM, Allen DJ, Pastor-Corrales M (1996) Identification and origin of races of Pseudomonas syringae pv phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Article  Google Scholar 

  • Taylor RK, Romberg MK, Alexander BJR (2011) A bacterial disease of hellebore caused by Pseudomonas viridiflava in New Zealand. Australas Plant Dis Note 6:28–29

    Article  Google Scholar 

  • Toben HM, Rudolph K (1996) Pseudomonas syringae pv. coriandricola, incitant of bacterial umbel blight and seed decay of coriander (Coriandrum sativum L.) in Germany. J Phytopathol 144:169–178

    Article  CAS  Google Scholar 

  • Trantas EA, Sarris PF, Mpalantinaki EE, Pentari MG, Ververidis FN, Goumas DE (2013) A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis. Eur J Plant Pathol 137:477–493

    Article  Google Scholar 

  • Tsurumaki N, Kojima A, Kanehashi K, Sawayanagi T, Ebihara Y, Watanabe T, Uematsu S et al (2005) Bacterial blight of pot marigold (Calendula officinalis L.), caused by Pseudomonas cichorii (abstract in Japanese). Jpn J Phytopathol 71:289–290

    Google Scholar 

  • Umesha S, Kong P, Richardson PA, Hong CX (2008) Bacterial blight of Iris caused by Pseudomonas syringae in Virginia. Plant Pathol 57:1176

    Article  Google Scholar 

  • Ustun N (2012) Bacterıal blight and pith necrosıs of eggplant ın Turkey. J Plant Pathol 94:437

    Google Scholar 

  • Valencia-Botín AJ, Cisneros-López NE (2012) A review of the studies and interactions of Pseudomonas syringae pathovars on wheat. Int J Agron 2012:692350. doi:10.1155/2012/692350

    Article  Google Scholar 

  • Valleu WD, Johnson EM, Diachun S (1944) Root infection of crop plants and weeds by tobacco leaf spot bacteria. Phytopathology 34:163–174

    Google Scholar 

  • Van Hall CJJ (1902) Bijdrage tot de kennis der bacteriële plantenziekten. Companyöperatieve drukkerij-vereeniging “Plantijn”. Inaug Diss, Amsterdam 8:372 (in Dutch)

  • Vegh A, Hevesi M, Nemethy ZS, Palkovics L (2012) First report of bacterial leaf spot of basil caused by Pseudomonas viridiflava in Hungary. Plant Dis 96:141

    Article  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Volksch BV, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecol 41:132–139

    Google Scholar 

  • Wechter WP, Keinath AP, Farnham MW, Smith JP (2010) First report of bacterial leaf blight on broccoli and cabbage caused by Pseudomonas syringae pv. alisalensis in south Carolina. Plant Dis 94:132

    Article  Google Scholar 

  • Wechter P, Keinath AP, Smith A, Farnham MW, Bull CT, Schofield DA (2014) First report of bacterial leaf blight on mustard greens (Brassica juncea) caused by Pseudomonas cannabina pv. alisalensis in Mississippi. Plant Dis 98:1151

    Article  Google Scholar 

  • Wilson M, Campbell HL, Ji P, Campbell HL, Cuppels DA, Louws FJ, Miller SA et al (2002) Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology 92:284–1292

    Article  Google Scholar 

  • Wolf FA, Foster AC (1917) Bacterial leaf spot of tobacco. Science 46:361–362

    Article  CAS  PubMed  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2014) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev. doi:10.1007/s13593-014-0252-3

    Google Scholar 

  • Xu X, Miller SA (2013) First report of bacterial leaf spot of parsley caused by Pseudomonas syringae pv. coriandricola in Ohio. Plant Dis 97:988

    Google Scholar 

  • Young JM (2010) Taxonomy of Pseudomonas syringae. J Plant Pathol 92:S1.5–S1.14

    Google Scholar 

  • Yu SM, Lee YH (2012) First report of Pseudomonas cichorii associated with leaf spot on soybean in South Korea. Plant Dis 96:142

    Article  Google Scholar 

  • Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720

    Article  CAS  PubMed  Google Scholar 

  • Yunis H, Bashan Y, Okon Y, Henis Y (1980) Two sources of resistance to bacterial speck of tomato caused by Pseudomonas tomato. Plant Dis 64:851–852

    Article  Google Scholar 

  • Zhang S, Fu Y (2013) First report of bacterial leaf spot on Cichorium intybus caused by Pseudomonas cichorii in Florida. Plant Dis 97:837

    Article  Google Scholar 

  • Zhao SF, Luo YN, Zhao HY, Du J, Fang XY (2009) First report of bacterial leaf spot on snow lotus caused by Pseudomonas syringae in China. Plant Dis 93:204

    Article  Google Scholar 

  • Zhou LH, Han Y, Ji GH, Wang ZS, Liu F (2013) First report of bacterial leaf spot disease caused by Pseudomonas syringae pv. syringae on Panax notoginseng. Plant Dis 97:685

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers of this manuscript for their valuable comments and suggestions and Steven T. Koike for providing a photo of infected broccoli with characteristic P. syringae disease symptoms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Ram Lamichhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, J.R., Messéan, A. & Morris, C.E. Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J Gen Plant Pathol 81, 331–350 (2015). https://doi.org/10.1007/s10327-015-0605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-015-0605-z

Keywords

Navigation