Skip to main content
Log in

Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?

  • REVIEW FOR THE 100TH ANNIVERSARY
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Cultivars with introgressed natural resistance genes have been widely used for plant disease control, especially in the control of virus diseases, for which no effective chemical control agent is available. However, we often encounter virus mutants that break down or overcome the resistance. In this review, recent studies will be discussed with respect to breakdown of plant virus resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Razzak A, Guiraud T, Peypelut M, Walter J, Houvenaghel MC, Candresse T, Le Gall O, German-Retana S (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol Plant Pathol 10:109–113

    CAS  PubMed  Google Scholar 

  • Ali ME, Kobayashi K, Yamaoka N, Ishikawa M, Nishiguchi M (2013) Graft transmission of RNA silencing to non-transgenic scions for conferring cvirus resistance in tobacco. PLoS ONE 8:e63257

    Google Scholar 

  • Antignus Y, Lachman O, Pearlsman M, Maslenin L, Rosner A (2008) A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L 4 resistance genotype of pepper cultivars. Plant Dis 92:1033–1037

    CAS  Google Scholar 

  • Asano M, Satoh R, Mochizuki A, Tsuda S, Yamanaka T, Nishiguchi M, Hirai K, Meshi T, Naito S, Ishikawa M (2005) Tobamovirus-resistant tobacco generated by RNA interference directed against host genes. FEBS Lett 579:4479–4484

    CAS  PubMed  Google Scholar 

  • Ashby JA, Stevenson CEM, Jarvis GE, Lawson DM, Maule AJ (2011) Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLoS ONE 6:e15873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I (2009) Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Mol Plant Microbe Interact 22:166–175

    CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81

    CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boukema IW (1980) Allelism of genes controlling resistance to TMV in Capsicum L. Euphytica 29:433–439

    Google Scholar 

  • Boukema IW (1982) Resistance to a new strain of TMV in Capsicum chacoense Hunz. Capsicum Newsl 1:49–51

    Google Scholar 

  • Boukema IW (1984) Resistance to TMV in Capsicum chacoense Hunz. is governed by allele of the L-locus. Capsicum Newsl 3:47–48

    Google Scholar 

  • Brun H, Chèvre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    PubMed  Google Scholar 

  • Calder VL, Palukaitis P (1992) Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. J Gen Virol 73:165–168

    CAS  PubMed  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C (2008) Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54:56–68

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci USA 97:489–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529

    CAS  PubMed  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F (2012) The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS ONE 7:e39169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    CAS  PubMed  Google Scholar 

  • Culver JN (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287–308

    CAS  PubMed  Google Scholar 

  • Culver JN, Dawson WO (1989) Tobacco mosaic virus coat protein: an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 173:755–758

    CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García JA, Candresse T (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant Microbe Interact 22:1302–1311

    CAS  PubMed  Google Scholar 

  • Dinesh-Kumar SP, Tham WH, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97:14789–14794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–934

    CAS  PubMed  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18:67–75

    CAS  PubMed  Google Scholar 

  • Fabre F, Bruchou C, Palloix A, Moury B (2009) Key determinants of resistance durability to plant viruses: insights from a model linking within- and between-host dynamics. Virus Res 141:140–149

    CAS  PubMed  Google Scholar 

  • Farnham G, Baulcombe DC (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc Natl Acad Sci USA 103:18828–18833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phophorylation, and establishment of a refractory state. Plant J 4:307–316

    CAS  Google Scholar 

  • Fournet S, Kerlan MC, Renault L, Dantec JP, Rouaux C, Montarry J (2013) Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence. Plant Pathol 62:184–193

    Google Scholar 

  • Furusawa I, Okuno T (1978) Infection with BMV of mesophyll protoplasts isolated from five plant species. J Gen Virol 40:489–491

    CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

  • García-Arenal F, McDonald BA (2003) An analysis of the durability of resistance to plant viruses. Phytopathology 93:941–952

    PubMed  Google Scholar 

  • García-Luque I, Ferrero ML, Rodríquez JM, Alonso E, de la Cruz A, Sanz AI, Vaquero C, Serra MT, Díaz-Ruíz JR (1993) The nucleotide sequence of the coat protein genes and 3′ non-coding regions of two resistance-breaking tobamoviruses in pepper shows that they are different viruses. Arch Virol 131:75–88

    PubMed  Google Scholar 

  • Genda Y, Kanda A, Hamada H, Sato K, Ohnishi J, Tsuda S (2007) Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L 4 gene-mediated resistance in Capsicum spp. Phytopathology 97:787–793

    CAS  PubMed  Google Scholar 

  • German-Retana S, Walter J, Doublet B, Roudet-Tavert G, Nicaise V, Lecampion C, Houvenaghel MC, Robaglia C, Michon T, Le Gall O (2008) Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. J Virol 82:7601–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilardi P, García-Luque I, Serra MT (2004) The coat protein of tobamovirus acts as elicitor of both L 2 and L 4 gene-mediated resistance in Capsicum. J Gen Virol 85:2077–2085

    CAS  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    PubMed  Google Scholar 

  • Gonsalves D (1998) Control of Papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    CAS  PubMed  Google Scholar 

  • Grzela R, Szolajska E, Ebel C, Madern D, Favier A, Wojtal I, Zagorski W, Chroboczek J (2008) Virulence factor of potato virus Y, genome-attached terminal protein VPg, is a highly disordered protein. J Biol Chem 283:213–221

    CAS  PubMed  Google Scholar 

  • Hagiwara Y, Komoda K, Yamanaka T, Tamai A, Meshi T, Funada R, Tsuchiya T, Naito S, Ishikawa M (2003) Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J 22:344–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamada H, Takeuchi S, Kiba A, Tsuda S, Hikichi Y, Okuno T (2002) Amino acid changes in Pepper mild mottle virus coat protein that affect L 3 gene-mediated resistance in pepper. J Gen Plant Pathol 68:155–162

    CAS  Google Scholar 

  • Hamada H, Takeuchi S, Morita Y, Sawada H, Kiba A, Hikichi Y (2003) Characterization of Paprika mild mottle virus first isolated in Japan. J Gen Plant Pathol 69:199–204

    CAS  Google Scholar 

  • Hamada H, Tomita R, Iwadate Y, Kobayashi K, Munemura I, Takeuchi S, Hikichi Y, Suzuki K (2007) Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L 3-mediated resistance in Capsicum plants. Virus Genes 34:205–214

    CAS  PubMed  Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122

    CAS  PubMed  Google Scholar 

  • Hussain MM, Melcher U, Whittle T, Williams A, Brannan CM, Mitchell ED Jr (1987) Replication of cauliflower mosaic virus DNA in leaves and suspension culture protoplasts of cotton. Plant Physiol 83:633–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi K, Ishikawa M (2013) The resistance protein tm-1 inhibits formation of a tomato mosaic virus replication protein-host membrane protein complex. J Virol 87:7933–7939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA 104:13833–13838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi K, Naito S, Meshi T, Ishikawa M (2009) An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses. Proc Natl Acad Sci USA 106:8778–8783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi K, Mawatari N, Miyashita S, Kishino H, Meshi T, Ishikawa M (2012) Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1. PLoS Pathog 8:e1002975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa M, Naito S, Ohno T (1993) Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J Virol 67:5328–5338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janzac B, Fabre F, Palloix A, Moury B (2009) Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Mol Plant Pathol 10:599–610

    CAS  PubMed  Google Scholar 

  • Jebasingh T, Jose M, Kasin Yadunandam A, Bachiyarani S, Srividhya KV, Krishnaswamy S, Usha R (2011) Molecular modeling and conformational analysis of native and refolded viral genome-linked protein of Cardamom mosaic virus. Indian J Biochem Biophys 48:336–340

    CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405

    CAS  PubMed  Google Scholar 

  • Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, Namba S (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microbe Interact 23:283–293

    CAS  PubMed  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    CAS  PubMed  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051

    CAS  PubMed  Google Scholar 

  • Léonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberté JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    PubMed Central  PubMed  Google Scholar 

  • Léonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberté JF (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85:1055–1063

    PubMed  Google Scholar 

  • Mahajan SK, Chisholm ST, Whitham SA, Carrington JC (1998) Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J 14:177–186

    CAS  PubMed  Google Scholar 

  • Malyshenko SI, Kondakova OA, Taliansky ME, Atabekov JG (1989) Plant virus transport function: complementation by helper viruses is non-specific. J Gen Virol 70:2751–2757

    Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    CAS  PubMed  Google Scholar 

  • McDonald B (2010) How can we achieve durable disease resistance in agricultural ecosystems? New Phytol 185:3–5

    PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kD protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meshi T, Motoyoshi F, Maeda T, Yoshiwoka S, Watanabe H, Okada Y (1989) Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1:515–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33

    CAS  PubMed  Google Scholar 

  • Nakahara KS, Shimada R, Choi SH, Yamamoto H, Shao J, Uyeda I (2010) Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. Mol Plant Microbe Interact 23:1460–1469

    CAS  PubMed  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda MA, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462

    CAS  PubMed  Google Scholar 

  • Nieto C, Rodríguez-Moreno L, Rodríguez-Hernández AM, Aranda MA, Truniger V (2011) Nicotiana benthamiana resistance to non-adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. Plant J 66:492–501

    CAS  PubMed  Google Scholar 

  • Nishiguchi M, Kobayashi K (2011) Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J Gen Plant Pathol 77:221–229

    Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1978) Behaviour of a temperature sensitive strain of Tobacco mosaic virus in tomato leaves and protoplasts. J Gen Virol 39:53–61

    Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1980) Further investigation of a temperature-sensitive strain of Tobacco mosaic virus: its behaviour in tomato leaf epidermis. J Gen Virol 46:497–500

    Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    CAS  PubMed  Google Scholar 

  • Plochocka D, Welnicki M, Zielenkiewicz P, Ostoja-Zagórski W (1996) Three-dimensional model of the potyviral genome-linked protein. Proc Natl Acad Sci USA 93:12150–12154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    CAS  PubMed  Google Scholar 

  • Quenouille J, Montarry J, Palloix A, Moury B (2013) Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol 14:109–118

    CAS  PubMed  Google Scholar 

  • Rantalainen KI, Eskelin K, Tompa P, Mäkinen K (2011) Structural flexibility allows the functional diversity of potyvirus genome-linked protein VPg. J Virol 85:2449–2457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richael C, Gilchrist D (1999) The hypersensitive response: a case of hold or fold? Physiol Mol Plant Pathol 55:5–12

    CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    CAS  PubMed  Google Scholar 

  • Roudet-Tavert G, Michon T, Walter J, Delaunay T, Redondo E, Le Gall O (2007) Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 88:1029–1033

    CAS  PubMed  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    CAS  PubMed  Google Scholar 

  • Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274:346–353

    CAS  PubMed  Google Scholar 

  • Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. Plant J 52:82–93

    CAS  PubMed  Google Scholar 

  • Saito T, Meshi T, Takamatsu N, Okada Y (1987) Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci USA 84:6074–6077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito T, Yamanaka K, Watanabe Y, Takamatsu N, Meshi T, Okada Y (1989) Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N’ gene. Virology 173:11–20

    CAS  PubMed  Google Scholar 

  • Sakamoto M, Tomita R, Hamada H, Iwadate Y, Munemura I, Kobayashi K (2008) A primer-introduced restriction analysis-PCR-based method to analyse Pepper mild mottle virus populations in plants and field soil with respect to virus mutations that break L 3 gene-mediated resistance of Capsicum plants. Plant Pathol 57:825–833

    CAS  Google Scholar 

  • Sawada H, Takeuchi S, Hamada H, Kiba A, Matsumoto M, Hikichi Y (2004) A new tobamovirus-resistance gene, L 1a, of sweet pepper (Capsicum annum L.). J Jpn Soc Hortic Sci 73:552–557

    CAS  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    CAS  PubMed  Google Scholar 

  • Sekine KT, Ishihara T, Hase S, Kusano T, Shah J, Takahashi H (2006) Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Mol Biol 62:669–682

    CAS  PubMed  Google Scholar 

  • Sekine KT, Kawakami S, Hase S, Kubota M, Ichinose Y, Shah J, Kang HG, Klessig DF, Takahashi H (2008) High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1398–1407

    CAS  PubMed  Google Scholar 

  • Sekine KT, Tomita R, Takeuchi S, Atsumi G, Saitoh H, Mizumoto H, Kiba A, Yamaoka N, Nishiguchi M, Hikichi Y, Kobayashi K (2012) Functional differentiation in the leucine-rich repeat domains of closely related plant virus-resistance proteins that recognize common avr proteins. Mol Plant Microbe Interact 25:1219–1229

    CAS  PubMed  Google Scholar 

  • Sugawara K, Shiraishi T, Yoshida T, Fujita N, Netsu O, Yamaji Y, Namba S (2013) A replicase of Potato virus X acts as the resistance-breaking determinant for JAX1-mediated resistance. Mol Plant Microbe Interact 26:1106–1112

    CAS  PubMed  Google Scholar 

  • Tameling WI, Baulcombe DC (2007) Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. Plant Cell 19:1682–1694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tavert-Roudet G, Abdul-Razzak A, Doublet B, Walter J, Delaunay T, German-Retana S, Michon T, Le Gall O, Candresse T (2012) The C terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral VPg and with lettuce translation eukaryotic initiation factor 4E. J Gen Virol 93:184–193

    CAS  PubMed  Google Scholar 

  • Tomita R, Sekine KT, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K (2011) Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol Plant Microbe Interact 24:108–117

    CAS  PubMed  Google Scholar 

  • Truniger V, Nieto C, González-Ibeas D, Aranda M (2008) Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J 56:716–727

    CAS  PubMed  Google Scholar 

  • Tsuda S, Kirita M, Watanabe Y (1998) Characterization of a Pepper mild mottle tobamovirus strain capable of overcoming the L 3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol Plant Microbe Interact 11:327–331

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Numaga T, Ohshima K, Yano MA, Ohsawa R, Goto DB, Naito S, Ishikawa M (2003) Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J 22:335–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61:31–45

    CAS  PubMed  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    CAS  PubMed  Google Scholar 

  • Wang Y, Bao Z, Zhu Y, Hua J (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact 22:498–506

    CAS  PubMed  Google Scholar 

  • Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285

    CAS  PubMed  Google Scholar 

  • Weber H, Schultze S, Pfitzner AJ (1993) Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2 2 resistance gene in the tomato. J Virol 67:6432–6438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham SA, Yamamoto ML, Carrington JC (1999) Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:772–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittmann S, Chatel H, Fortin MG, Laliberté JF (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92

    CAS  PubMed  Google Scholar 

  • Yamaji Y, Maejima K, Komatsu K, Shiraishi T, Okano Y, Himeno M, Sugawara K, Neriya Y, Minato N, Miura C, Hashimoto M, Namba S (2012) Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell 24:778–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R, Dean C, Naito S, Ishikawa M (2000) TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci USA 97:10107–10112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M (2002) Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 76:2491–2497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM (2007) Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19:2913–2928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M (2004) The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 78:6102–6111

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 24658044 (KK); JSPS KAKENHI Grant Number 24780043 and Yamazaki Spice Promotion Foundation (KTS); and the Program for Promotion of Basic and Applied Researches in Bio-oriented Industry, and JSPS KAKENHI Grant Number 24580065 (MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kappei Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Sekine, KT. & Nishiguchi, M. Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?. J Gen Plant Pathol 80, 327–336 (2014). https://doi.org/10.1007/s10327-014-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-014-0527-1

Keywords

Navigation