Skip to main content
Log in

Environmental geochemistry of technetium

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Technetium-99 (99Tc) is a radioactive isotope with a half-life of 2.13 × 105 year. 99Tc is a major radionuclide contaminant of concern for the world. Therefore, detailed understanding of 99Tc environmental chemistry is important for protecting human and ecological health. Here, we review the aqueous geochemistry of 99Tc, focusing on chemical properties and behavior of 99Tc in the hydrosphere and pedosphere. We describe the general chemistry of Tc including coordination chemistry, isotope chemistry and solid-state chemistry. Then we present anthropogenic and indigenous sources of 99Tc and their environmental distribution. We also discuss the radiotoxicity of 99Tc and the use of 99Tc for medical purpose. Tc biogeochemistry is described through sorption and desorption reactions at the mineral–water interface, thermodynamic of surface complexation, abiotic and biotic redox reaction of Tc(VII). Finally, we summarize the 99Tc remediation technologies including cement waste forms, natural remediation, vitrification, nuclear waste transmutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from McBride (1994)

Similar content being viewed by others

References

  • Aarkrog A, Dahlgaard H, Hallstadius L, Holm E, Mattsson S, Rioseco J (1986) Time trend of 99Tc in seaweed from Greenland waters. In: Technetium in the environment. Springer, pp 69–78. doi:10.1007/978-94-009-4189-2_7

  • Ahrland S, Chatt J, Davies N (1973) The relative affinities of ligand atoms for acceptor molecules and ions. In: Pearson RG (ed) Hard and soft acids and bases. Hutchinson and Ross Inc., Stroudsburg, p 28

    Google Scholar 

  • Alberto R (2009) The chemistry of technetium–water complexes within the manganese triad: challenges and perspectives. Eur J Inorg Chem 1:21–31. doi:10.1002/ejic.200800909

    Article  CAS  Google Scholar 

  • Allen PG, Siemering GS, Shuh DK, Bucher JJ, Edelsteign NM, Langton CA, Clark SB, Reich T, Denecke MA (1997) Technetium speciation in cement waste forms determined by x-ray absorption fine structure spectroscopy. Radiochim Acta 76:77–86. doi:10.1524/ract.1997.76.12.77

    Article  CAS  Google Scholar 

  • Aloy A, Kovarskaya EN, Harbour JR, Langton CA, Holtzscheiter EW (2007) Pretreatment of Tc-containing waste and its effect on Tc-99 leaching from grouts. MRS Proc 985:272–367. doi:10.1557/PROC-985-0985-NN10-02

    Google Scholar 

  • Angus M, Glasser F (1985) The chemical environment in cement matrices. Mater Res Soc Symp Proc. doi:10.1557/PROC-50-547

    Google Scholar 

  • Aryal BP, Brugarolas P, He C (2011) Binding of ReO4 with an engineered MoO4 2−-binding protein: towards a new approach in radiopharmaceutical applications. J Biol 17:97–106. doi:10.1007/s00775-011-0833-4

    Google Scholar 

  • Atkins M, Glasser F (1992) Application of Portland cement-based materials to radioactive waste immobilization. Waste Manage 12:105–131. doi:10.1016/0956-053X(92)90044-J

    Article  CAS  Google Scholar 

  • Baldas J (1996) The chemistry of technetium nitrido complexes. Top Curr Chem 176:37–76. doi:10.1007/3-540-59469-8_3

    Article  CAS  Google Scholar 

  • Bandoli G, Tisato F, Dolmella A, Agostini S (2006) Structural overview of technetium compounds (2000–2004). Coord Chem Rev 250:561–573. doi:10.1016/j.ccr.2005.09.012

    Article  CAS  Google Scholar 

  • Banerjee SR, Maresca KP, Francesconi L, Valliant J, Babich JW, Zubieta J (2005) New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl Med Biol 32:1–20. doi:10.1016/j.nucmedbio.2004.09.001

    Article  CAS  Google Scholar 

  • Bebie J, Schoonen MA, Fuhrmann M, Strongin DR (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochim Cosmochim Acta 62:633–642. doi:10.1016/S0016-7037(98)00058-1

    Article  CAS  Google Scholar 

  • Begg JDC, Burke IT, Morris K (2007) The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK. Sci Total Environ 373:297–304. doi:10.1016/j.scitotenv.2006.10.034

    Article  CAS  Google Scholar 

  • Bock WD, Brühl H, Trapp C, Winkler A (1988) Sorption properties of natural sulfides with respect to technetium. Mater Res Soc Symp. doi:10.1557/PROC-127-973

    Google Scholar 

  • Boggs MA, Nulle SE, Wall NA (2015) Size fractionated complexation of Tc(IV) with soil humic acids at varying solution conditions. J Radiaoanal Nucl Chem 303:541–549. doi:10.1007/s10967-014-3325-5

    Article  CAS  Google Scholar 

  • Bostick W, Shoemaker J, Osborne P, Evans-Brown B (1990) Treatment and disposal options for a heavy metals waste containing soluble technetium-99. In: ACS symposium series

  • Bruggeman C, Maes A, Vancluysen J (2007) The identification of FeS2 as a sorption sink for Tc (IV). Phys Chem Earth A B C 32:573–580. doi:10.1016/j.pce.2005.12.006

    Article  Google Scholar 

  • Bryan C, Wang Y, Xu H, Braterman P, Gao H (2002) As, Se, and Re sorption by Mg–Al layered double hydroxides. Mater Res Soc Symp Proc. doi:10.1557/PROC-757-II8.5

    Google Scholar 

  • Buda C, Burt SK, Cundari TR, Shenkin PS (2002) De novo structural prediction of transition metal complexes: application to technetium. Inorg Chem 41:2060–2069. doi:10.1021/ic0109748

    Article  CAS  Google Scholar 

  • Cantrell K, Krupka K, Deutsch W, Lindberg M (2009) Contaminant release from residual waste in Hanford single shell tanks at the Hanford Site, Washington, USA. In: Proceedings of the 35th international waste management conference (WM’09), Phoenix, Arizona, 1–5 March 2009

  • Centre for Environment, Fisheries & Aquaculture Science (CEFAS) (2010) Radioactivity in food and the environment, 2009, RIFE-15, 2010. http://www.cefas.co.uk/publications/rife/rife15.pdf. Accessed Feb 9 2015

  • Chart of Nuclides. Brookhaven National Laboratory. http://www.nndc.bnl.gov/chart/reCenter.jsp?z=58&n=78. Accessed June 20 2012

  • Colton R, Peacock R (1962) An outline of technetium chemistry. Chem Soc Rev 16:299–315. doi:10.1039/qr9621600299

    Article  CAS  Google Scholar 

  • Cui D, Eriksen TE (1996a) Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material. Environ Sci Technol 30:2263–2269. doi:10.1039/QR9621600299

    Article  CAS  Google Scholar 

  • Cui D, Eriksen TE (1996b) Reduction of pertechnetate by ferrous iron in solution: influence of sorbed and precipitated Fe(II). Environ Sci Technol 30:2259–2262. doi:10.1021/es9506263

    Article  CAS  Google Scholar 

  • Curtis D, Fabryka-Martin J, Dixon P, Cramer J (1999) Nature’s uncommon elements: plutonium and technetium. Geochim Cosmochim Acta 63:275–285. doi:10.1016/S0016-7037(98)00282-8

    Article  CAS  Google Scholar 

  • Defense waste processing facility (2009) Savannah River Remediation LLC. http://www.srs.gov/general/news/factsheets/dwpf.pdf. Accessed Sept 5 2012

  • Del Cul G, Bostick W, Trotter D, Osborne P (1993) Technetium-99 removal from process solutions and contaminated groundwater. Sep Sci Technol 28:551–564. doi:10.1080/01496399308019506

    Article  Google Scholar 

  • Deutsch E, Hirth W (1987) In vivo inorganic chemistry of technetium cations. J Nucl Med 28:1491–1500

    CAS  Google Scholar 

  • Deutsch WJ, Krupka KM, Lindberg MJ, Cantrell KJ, Brown CF, Schaef HT (2006) Hanford tank 241-C-106: impact of cement reactions on release of contaminants from residual waste. PNNL, Richland

    Book  Google Scholar 

  • Dolor MK (2005) The mechanism of rhenium fixation in reducing sediments. Ph. D Dissertation, University of Maryland

  • Drinking water contaminants—standards and regulations. EPA. http://water.epa.gov/drink/contaminants/index.cfm#List. Accessed June 4 2012

  • Edwards DS, Liu S, Barrett JA, Harris AR, Looby RJ, Ziegler MC, Heminway SJ, Carroll TR (1997) New and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjugate Chem 8:146–154. doi:10.1021/bc970002h

    Article  CAS  Google Scholar 

  • El-Swaify S, Coleman N, Bredell G, Arca M (1967) Negative adsorption by vermiculite: salt exclusion from interlayer volumes. Soil Sci Soc Am J 31:464–466. doi:10.2136/sssaj1967.03615995003100040015x

    Article  CAS  Google Scholar 

  • Facts about technetium-99 (2002) The United States Environmental Protection Agency. https://www.nrc.gov/docs/ML1603/ML16032A152.pdf. Accessed 6 June 2013

  • Fredrickson JK, Zachara JM, Kennedy DW, Kukkadapu RK, McKinley JP, Heald SM, Liu C, Plymale AE (2004) Reduction of TcO4 by sediment-associated biogenic Fe(II). Geochim Cosmochim Acta 15:3171–3187. doi:10.1016/j.gca.2003.10.024

    Article  CAS  Google Scholar 

  • Geraedts K, Bruggeman C, Maes A, Van Loon LR, Rossberg A, Reich T (2002) Evidence for the existence of Tc(IV)–humic substance species by X-ray absorption near-edge spectroscopy. Radiochim Acta 90:879–884. doi:10.1524/ract.2002.90.12_2002.879

    Article  CAS  Google Scholar 

  • Gilliam TM, Spence RD, Bostick WD, Shoemaker J (1990) Solidification/stabilization of technetium in cement-based grouts. J Hazard Mater 24:189–197. doi:10.1016/0304-3894(90)87009-7

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Manganese, technetium and rhenium. In: Chemistry of the elements, 2nd edn. Elsevier, pp 1040–1044

  • Haines R, Owen D, Van Der Graaf T (1987) Technetium-iron oxide reactions under anaerobic conditions: a Fourier transform infrared, FTIR study. Nucl J Can 1:32–37

    Google Scholar 

  • Hang T, Kaplan DI (2007) Modeling of the sub-surface reducing environment of the Z-Area Saltstone disposal facility at the Savannah River Site In: Proceedings of the 2007 spring simulation multiconference. Society for computer simulation, vol 3, pp 33–37

  • Harbour J, Hansen E, Edwards T, Williams V, Eibling R, Best D, Missimer D (2006) Characterization of slag, fly ash and portland cement for saltstone. United States Department of Energy. Process Science and Engineering Savannah River National Laboratory, Aiken, SC 29808. WSRC-TR-2006-00067

  • Haudin C, Quillérou E, Wang G, Staunton S, Martin-Garin A (2011) Dynamics of Tc immobilization in soils under flooded conditions and extent of reoxidation following aeration. Geomicrobiol J 28:410–417. doi:10.1080/01490451.2010.507641

    Article  CAS  Google Scholar 

  • Hjelstuen OK (1995) Technetium-99 m chelators in nuclear medicine: a review. Analyst 120:863–866. doi:10.1039/AN9952000863stop

    Article  CAS  Google Scholar 

  • Holm E (1993) Radioanalytical studies of Tc in the environment-progress and problems. Radiochim Acta 63:57–68. doi:10.1524/ract.1993.63.special-issue.57

    Article  CAS  Google Scholar 

  • Hu Q, Zavarin M, Rose T (2008) Effect of reducing groundwater on the retardation of redox-sensitive radionuclides. Geochem Trans 9:12. doi:10.1186/1467-4866-9-12

    Article  CAS  Google Scholar 

  • Huheey JE, Evans RS (1973) Electronegativity, acids, and bases-II. In: Pearson RG (ed) Hard and soft acids and bases. Hutchinson and Ross Inc., Stroudsburg, p 232

    Google Scholar 

  • IAEA (1982) Generic models and parameters for assessing the environmental transfer of radionuclides from routine releases. Safety series; no. 57; 1982; 96 p; IAEA; Vienna. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/14/732/14732403.pdf

  • IAEA (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Vienna

  • Icenhower JP, Qafoku NP, Zachara JM, Martin WJ (2010) The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment. Am J Sci 310:721–752. doi:10.2475/08.2010.02

    Article  CAS  Google Scholar 

  • Ihsanullah (1993) Losses of technetium during various steps in the development of a procedure for environmental samples. J Radioanal Nucl Chem 176:303–313. doi:10.1007/BF02163495

    Article  CAS  Google Scholar 

  • Ito K, Akiba K (1991) Adsorption of pertechnetate ion on active carbon from acids and their salt solutions. J Radioanal Nucl Chem 390–381:152. doi:10.1007/BF02104691

    Google Scholar 

  • Johannsen B, Spies H (1996) Technetium(V) chemistry as relevant to nuclear medicine. Top Curr Chem 176:79–121

    Google Scholar 

  • Juniku RB (2004) Designing chiral rhenium (VII) trioxo complexes. Dissertation, Oregon State University

  • Jurisson S, Gawenis J, Landa ER (2004) Sorption of 99mTc radiopharmaceutical compounds by soils. Health Phys 87:423–428. doi:10.1097/01.HP.0000128583.33124.7d

    Article  CAS  Google Scholar 

  • Kang MJ, Rhee SW, Moon H, Neck V, Fandhanel T (1996) Sorption of MO 4 (M = Tc, Re) on Mg/Al layered double hydroxide by anion exchange. Radiochim Acta 75:169–174

    Article  CAS  Google Scholar 

  • Kang MJ, Rhee SW, Hahn PS (2003) Sorption of aqueous toxic anions on calcined Mg/Al layered double hydroxide: an approach to mechanism. Environ Eng Res 8:22–30

    Article  Google Scholar 

  • Kaplan DI (2003) Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption. Radiochim Acta 91:173–178. doi:10.1524/ract.91.3.173.19977

    Article  CAS  Google Scholar 

  • Kaplan D, Serne R (1998) Pertechnetate exclusion from sediments. Radiochim Acta 81:117–124

    Article  CAS  Google Scholar 

  • Kaplan D, Lilley M, Almond P, Powell B (2011) Long-term technetium interactions with reducing cementitious materials. SRS. doi:10.2172/1012465

    Google Scholar 

  • Kim E, Boulègue J (2003) Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochim Acta 91:211–216. doi:10.1524/ract.91.4.211.19968

    Article  CAS  Google Scholar 

  • King RB (2005) Technetium: organometallic chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Kornicker W (1988) Interactions of divalent cations with pyrite and mackinawite in seawater and sodium-chloride solutions. Dissertation, Texas A&M University

  • Köstlmeier S, Nasluzov VA, Herrmann WA, Rösch N (1997) Lewis acidity and reactivity of transition metal oxo complexes: a comparative density functional study of CH3ReO3, CH3TcO3, and their base adducts. Organometal 16:1786–1792. doi:10.1021/om9608317

    Article  Google Scholar 

  • Krupka KM, Cantrell KJ, Schaef HT, Arey BW, Heald SM, Deutsch WJ, Lindberg MJ (2009) Characterization of solids in residual Wastes from single-shell tanks at the Hanford Site, Washington, USA-9277. In: WM2009 Waste Management for the Nuclear Renaissance, WM Symposia Inc. Tempe, AZ

  • Kuwabara J, Yamamoto M, Oikawa S, Komura K, Assinder D (1999) Measurements of 99Tc, 137Cs, 237Np, Pu isotopes and 241Am in sediment cores from intertidal coastal and estuarine regions in the Irish Sea. J Radioanal Nucl 240:593–601

    Article  CAS  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Langton C (1987) Slag-based saltstone formulations. Mater Res Soc Symp Proc 114:61

    Article  Google Scholar 

  • Lee S, Bondietti E (1983) Technetium behavior in sulfide and ferrous iron solutions. Mater Res Soc Symp Proc 15:315

    Article  CAS  Google Scholar 

  • Lenell B, Arai Y (2017) Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media. J Hazard Mater 321:335–343. doi:10.1016/j.jhazmat.2016.09.024

    Article  CAS  Google Scholar 

  • Lieser K, Bauscher C (1987) Technetium in the hydrosphere and in the geosphere. I. Chemistry of technetium and iron in natural waters and influence of the redox potential on the sorption of technetium. Radiochim Acta 42:205–214

    CAS  Google Scholar 

  • Lieser K, Bauscher C (1988) Technetium in the hydrosphere and in the geosphere II. Influence of pH, of complexing agents, and of some minerals on the sorption of technetium. Radiochim Acta 44:125–128

    Google Scholar 

  • Liu S, Edwards DS (1999) 99 mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268. doi:10.1021/cr980436l

    Article  CAS  Google Scholar 

  • Liu D, Fan X (2005) Adsorption behavior of 99Tc on Fe, Fe2O3 and Fe2O4. J Radioanal Nucl Chem 264:691–698. doi:10.1007/s10967-005-0772-z

    Article  CAS  Google Scholar 

  • Liu Y, Terry J, Jurisson SS (2008) Pertechnetate immobilization with amorphous iron sulfide. Radiochim Acta 95:823–833. doi:10.1524/ract.2008.1528

    Google Scholar 

  • Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C, Steele H, Collison D, Vaughan DJ, Pattrick RAD (2004) X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J Environ Radioact 74:211–219. doi:10.1016/j.jenvrad.2004.01.012

    Article  CAS  Google Scholar 

  • Llorens I, Fattahi M, Grambow B (2007) New synthesis route and characterization of siderite (FeCO3) and coprecipitation of 99Tc. In: Materials research society symposia proceedings

  • Lloyd J, Macaskie L (1996) A novel phosphorimager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62:578–582

    CAS  Google Scholar 

  • Lloyd J, Cole J, Macaskie L (1997) Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179:2014–2021

    Article  CAS  Google Scholar 

  • Lloyd J, Nolting HF, Sole V, Bosecker K, Macaskie L (1998) Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiol J 15:45–58

    Article  CAS  Google Scholar 

  • Lloyd J, Thomas G, Finlay J, Cole J, Macaskie L (1999) Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Biotechnol Bioeng 66:122–130. doi:10.1002/(SICI)1097-0290(1999)66:2<122:AID-BIT5>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  • Lloyd J, Sole V, Van Praagh C, Lovley D (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749. doi:10.1128/AEM.66.9.3743-3749.2000

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  Google Scholar 

  • Lukens WW, Bucher JJ, Shuh DK, Edelstein NM (2005) Evolution of technetium speciation in reducing grout. Environ Sci Technol 39:8064–8070. doi:10.1021/cm0622001

    Article  CAS  Google Scholar 

  • Lukens WW, McKeown DA, Buechele AC, Muller IS, Shuh DK, Pegg IL (2007) Dissimilar behavior of technetium and rhenium in borosilicate waste glass as determined by X-ray absorption spectroscopy. Chem Mater 19:559–566

    Article  CAS  Google Scholar 

  • Maes A, Bruggeman C, Geraedts K, Vancluysen J (2003) Quantification of the interaction of Tc with dissolved boom clay humic substances. Environ Sci Technol 37:747–753. doi:10.1021/es020091v

    Article  CAS  Google Scholar 

  • Marra S, O’Driscoll R, Fellinger T, Ray J, Patel P, Occhipinti J (1999) DWPF vitrification—transition to the second batch of high level waste radioactive sludge. In: Proceedings of the international conference “Waste Management’99, Tucson, AZ, United States, pp 48–05

  • Material safety data sheet (2010). Sigma-Aldrich. http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=204188&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F204188%3Flang%3Den. Accessed 3 Sept 2012

  • Mattigod SV, Serne RJ, Fryxell GE (2003) Selection and testing of “getters” for adsorption of iodine-129 and technetium-99: A review. PNNL, Richland

    Book  Google Scholar 

  • Mattigod SV, Bovaird CC, Wellman DM, Skinner DCJ, Cordova EA, Wood MI (2009) Effect of concrete waste form properties on radionuclide migration. PNNL, Richland

    Book  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Momoshima N, Sayad M, Takashima Y (1995) Determination of 99Tc in coastal seawater collected in Fukuoka, Japan. J Radioanal Nucl Chem 197:245–251. doi:10.1007/BF02036003

    Article  CAS  Google Scholar 

  • Momoshima N, Sayad M, Yamada M, Takamura M, Kawamura H (2005) Global fallout levels of 99Tc and activity ratio of 99Tc/137Cs in the Pacific Ocean. J Radioanal Nucl Chem 266:455–460. doi:10.1007/s10967-005-0931-2

    Article  CAS  Google Scholar 

  • Ng YC, Colsher CS, Thompson SE (1979) Transfer coefficients for terrestrial foodchain: their derivation and limitations. Lawrence Livermore Lab, California University, California, California

    Google Scholar 

  • Nowak E (1980) Radionuclide sorption and migration studies of getters for backfill barriers. Sandia National Labs, Albuquerque

    Google Scholar 

  • Omori T (1996) Substitution reactions of technetium compounds. Top Curr Chem 176:253–273

    Article  CAS  Google Scholar 

  • Ono M, Arano Y, Uehara T, Fujioka Y, Ogawa K, Namba S, Mukai T, Nakayama M, Saji H (1999) Intracellular metabolic fate of radioactivity after injection of technetium-99 m-labeled hydrazino nicotinamide derivatized proteins. Bioconjugate Chem 10:386–394. doi:10.1021/bc980105f

    Article  CAS  Google Scholar 

  • Palmer DA, Meyer RE (1981) Adsorption of technetium on selected inorganic ion-exchange materials and on a range of naturally occurring minerals under oxic conditions. J Inorg Nucl Chem 43:2979–2984. doi:10.1016/0022-1902(81)80654-9

    Article  CAS  Google Scholar 

  • Paquette J, Reid J, Rosinger E (1980) Review of technetium behavior in relation to nuclear waste disposal. Atomic Energy Commission 23:19. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/23/066/23066563.pdf

  • Peacock RD (1966) The chemistry of technetium and rhenium. Elsevier, New York

    Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. doi:10.1021/ja00905a001

    Article  CAS  Google Scholar 

  • Pearson RG (1968) Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ 45:581. doi:10.1021/ed045p581

    Article  CAS  Google Scholar 

  • Peretroukhine V, Sergeant C, Devès G, Poulain S, Vesvres M, Thomas B, Simonoff M (2006) Technetium sorption by stibnite from natural water. Radiochim Acta 94:665–669. doi:10.1524/ract.2006.94.9.665

    Article  CAS  Google Scholar 

  • Peretyazhko T, Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, Moore D, Resch CT (2008) Heterogeneous reduction of Tc(VII) by Fe(II) at the solid–water interface. Geochim Cosmochim Acta 72:1521–1539. doi:10.1016/j.gca.2008.01.004

    Article  CAS  Google Scholar 

  • Poineau F, Rodriguez E, Weck P, Sattelberger A, Forster P, Hartmann T, Mausolf E, Silva GWC, Jarvinen G, Cheetham A (2009) Review of technetium chemistry research conducted at the University of Nevada Las Vegas. J Radioanal Nucl Chem 282:605–609. doi:10.1007/s10967-009-0226-0

    Article  CAS  Google Scholar 

  • Pollutants in the ambient air (2010a). U.S. EPA. http://www.epa.gov/apti/course422/ap2.html

  • Radioisotope safety data sheet technetium 99 m (2004). In: Occupational Health & Safety Division, the University of Queensland. http://www.uq.edu.au/ohs/pdfs/Tc99mguideline.pdf. Accessed Sept 3 2012

  • Roat-Malone RM (2002) Inorganic chemistry essentials. In: Bioinorganic chemistry: a short course. Wiley, London, pp 1–23. doi:10.1002/0471265330.ch1

  • Rulfs CL, Pacer RA, Hirsch R (1967) Technetium chemistry, oxidation states and species. J Inorg Nucl Chem 29:681–691. doi:10.1016/0022-1902(67)80323-3

    Article  CAS  Google Scholar 

  • Serne RJ (1990) Grouted waste leach tests: pursuit of mechanisms and data for long-term performance assessment. Scientific B as is for Nuclear Waste Management XIII. Oversby VM, Brown PW (eds) Materials Research Society, Boston, MA, vol 76, pp. 91–99

  • Shen D, Fan X, Su X, Zeng J, Dong Y (2002) Sorption of radioactive technetium on pyrrhotine. J Radioanal Nucl Chem 254:137–142. doi:10.1023/A:1020810118684

    Article  CAS  Google Scholar 

  • Shi K, Hou X, Roos P, Wu W (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20. doi:10.1016/j.aca.2011.10.020

    Article  CAS  Google Scholar 

  • Shuh DK, Lukens WW, Fickes MJ, Bucher JJ, Burns CJ, Edelstein NM (2000) Research program to investigate the fundamental chemistry of technetium. EMSP-60296:1–60. Final report. U.S. Department of Energy

  • Siekierski S, Burgess J (2002) Concise chemistry of the elements. Horwood Publishing, England

    Book  Google Scholar 

  • Skarnemark G (1992) Field and laboratory studies of the reduction and sorption of technetium (VII). Radiochimica Acta 58:239–244

    Google Scholar 

  • Skomurski FN, Rosso KM, Krupka KM, McGrail BP (2010) Technetium incorporation into hematite (α-Fe2O3). Environ Sci Technol 44:5855–5861. doi:10.1021/es100069x

    Article  CAS  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  • Sparks N, Mann S, Bazylinski D, Lovley D, Jannasch H, Frankel RB (1990) Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet Sci Lett 98:14–22. doi:10.1016/0012-821X(90)90084-B

    Article  CAS  Google Scholar 

  • Strickert R, Friedman A, Fried S (1978) Sorption of technetium and iodine radioisotopes by various minerals. Trans Am Nucl Soc 28:365–366

    Google Scholar 

  • Stwertka A (2002) A guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Tagami K (2003) Technetium-99 behavior in the terrestrial environment. J Radioanal Nucl Chem 4:A1–A8. doi:10.14494/jnrs2000.4.A1

    Google Scholar 

  • Tagami K, Uchida S (1999) Chemical transformation of technetium in soil during the change of soil water conditions. Chemosphere 38:963–971. doi:10.1016/S0045-6535(98)00361-0

    Article  CAS  Google Scholar 

  • Tagami K, Uchida S (2002) Global fallout technetium-99 distribution and behavior in Japanese soils. J Nucl Radiochem Sci 3:1–5. doi:10.14494/jnrs2000.3.2_1

    Article  Google Scholar 

  • Thorpe CL, Lloyd JR, Law GTW, Williams HA, Atherton N, Cruickshank JH, Morris K (2015) Retention of Tc-99 m at ultra-trace levels in flowing column experiments—insights into bioreduction and biomineralization for remediation at nuclear facilities. Geomicrobiol J 33:199–205. doi:10.1080/01490451.2015.1067656

    Article  CAS  Google Scholar 

  • Till JE (1986) Technetium discharges into the environment. In: Desmet G, Myttenaere C (eds) Technetium in the environment. Springer, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Tisato F, Refosco F, Bandoli G (1994) Structural survey of technetium complexes. Coord Chem Rev 135–136:325–397. doi:10.1016/0010-8545(94)80072-3

    Article  Google Scholar 

  • Tro N (2008) Chemistry, a molecular approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Um W, Valenta MM, Chung CW, Yang J, Engelhard MH, Serne RJ, Parker KE, Wang G, Cantrell KJ, Westsik JH (2011) Radionuclide retention mechanisms in secondary waste-form testing: Phase II. PNNL, Richland

    Book  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2000) Federal Register: Part 2, 40 CFR Parts 9, 141, and 142, National Primary Drinking Water Regulations: Radionuclides; Final Rule. 815-Z-00-006

  • Vandergraaf T, Ticknor K, George I (1984) Reactions between technetium in solution and iron-containing minerals under oxic and anoxic conditions, vol 246. Atomic Energy of Canada Ltd., Pinawa, pp 25–43

    Google Scholar 

  • Vasilyeva GK, Strijakova ER, Shea PJ (2006) Use of activated carbon for soil bioremediation. Soil and water pollution monitoring, protection and remediation. Springer, Netherlands, pp 309–322

    Chapter  Google Scholar 

  • Vinsova H, Konirova R, Koudelkova M, Jedinakova-Krizova V (2004) Sorption of technetium and rhenium on natural sorbents under aerobic conditions. J Radioanal Nucl Chem 261:407–413. doi:10.1023/B:JRNC.0000034878.72774.53

    Article  CAS  Google Scholar 

  • Vinšová H, Vecerník P, Jedináková-Krízová V (2006) Sorption characteristics of 99Tc onto bentonite material with different additives under anaerobic conditions. Radiochim Acta 94:435–440. doi:10.1524/ract.2006.94.8.435

    Article  CAS  Google Scholar 

  • Volkert WA, Jurisson S (1996) Technetium-99m chelates as radiopharmaceuticals. Top Curr Chem 176:123–147

    Article  CAS  Google Scholar 

  • Wahl AC, Bonner NA (1951) Technetium. Radioactivity applied to chemistry. Wiley, New York, pp 185–190

    Google Scholar 

  • Walton FB, Paquette J, Ross JPM, Lawrence WE (1986) Tc(IV) and Tc(VII) interactions with iron oxyhydroxides. Nucl Chem Waste Man 6:121–126. doi:10.1016/0191-815X(86)90049-5

    Article  CAS  Google Scholar 

  • Waste treatment & immobilization plant project (2013). Department of Energy. http://www.hanford.gov/page.cfm/WTP. Accessed May 2 2013

  • Wildung R, Routson R, Serne R, Garland T (1974) Pertechnetate, iodide, and methyl iodide retention by surface soils. Annual meeting of the American Agronomy Society, Chicago, Illinois. BNWL-SA–5195; CONF-741121—3. Battelle Pacific Northwest Labs., Richland, Wash. (USA)

  • Wildung RE, McFadden KM, Garland TR (1979) Technetium sources and behavior in the environment. J Environ Qual 8:156–161

    Article  CAS  Google Scholar 

  • Wildung RE, Gorby YA, Krupka KM, Hess NJ, Li S, Plymale AE, McKinley JP, Fredrickson JK (2000) Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Appl Environ Microbiol 66:2451–2460. doi:10.1128/AEM.66.6.2451-2460.2000

    Article  CAS  Google Scholar 

  • Wolfrum C, Bunzl K (1986) Sorption and desorption of technetium by humic substances under oxic and anoxic conditions. J Radioanal Nucl Chem 99:315–323. doi:10.1007/BF02037591

    Article  CAS  Google Scholar 

  • Wolthers M, Charlet L, Van der Linde PR, Rickard D, Van der Weijden CH (2005) Surface chemistry of disordered mackinawite (FeS). Geochim Cosmochim Acta 69:3469–3481. doi:10.1016/j.gca.2005.01.027

    Article  CAS  Google Scholar 

  • Yoshihara K (1996a) Recent studies on the nuclear chemistry of technetium. Top Curr Chem 176:1–16

    Article  CAS  Google Scholar 

  • Yoshihara K (1996b) Technetium in the environment. Top Curr Chem 176:123

    Article  Google Scholar 

  • Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, McKinley JP, Dohnalkova AC, Moore DA (2007) Reduction of pertechnetate [Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products. Geochim Cosmochim Acta 71:2137–2157. doi:10.1016/j.gca.2006.10.025

    Article  CAS  Google Scholar 

  • Zhuang H, Zeng J, Zhu L (1988) Sorption of radionuclides technetium and iodine on minerals. Radiochim Acta 44:143–146

    Google Scholar 

Download references

Acknowledgements

This research was supported by the South Carolina Universities Research and Education Foundation, Contract No. DE-AC09-08SR22470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Arai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, A.H., Arai, Y. Environmental geochemistry of technetium. Environ Chem Lett 15, 241–263 (2017). https://doi.org/10.1007/s10311-017-0605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0605-7

Keywords

Navigation