Skip to main content

Advertisement

Log in

Nanodiagnostics for plant pathogens

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Rapid detection technologies with high sensitivity and selectivity for plant pathogens are essential to prevent disease spread and minimize losses to assure optimal productivity and food security. Traditional laboratory techniques such as microscopy and culture are time-consuming, labour intensive and require complex sample handling. Immunological and molecular techniques have advanced but have some issues related to rapidity, signal strength and instrumentation. The integration of immunological and molecular diagnostics with nanotechnology systems offers an option where all detection steps can be accommodated on a portable miniaturized device for rapid and accurate detection of plant pathogens. The sensitive nature of functionalized nanoparticles can be used to design phytopathogen detection devices with smart sensing capabilities for field use. This review summarizes the current status and future prospects of nanotechnology for detection and diagnosis of plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Salah KM, Zourob MM, Mouffouk F, Alrokayan SA et al (2015) DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 15:14539–14568

    CAS  Google Scholar 

  • Actis P, Jejelowo O, Pourmand N (2010) Ultrasensitive mycotoxin detection by STING sensors. Biosens Bioelectron 26:333–337

    CAS  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236

    CAS  Google Scholar 

  • Alonso-Lomilloa MA, Domınguez-Renedoa O, Ferreira-Gonc L, Arcos-Martıneza MJ (2010) Sensitive enzyme-biosensor based on screen-printed electrodes for ochratoxin A. Biosens Bioelectron 25:1333–1337

    Google Scholar 

  • Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Ann Rev Plant Pathol 42:339–366

    CAS  Google Scholar 

  • Ansari AA, Kaushik A, Pratima R, Solanki Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77:75–81

    CAS  Google Scholar 

  • Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117

    Google Scholar 

  • Baeummer A (2004) Nanosensors identify pathogens in food. Food Technol 58:5155

    Google Scholar 

  • Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2013) Development of a fluorescence resonance energy transfer (FRET)-based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3(4):419–428

    CAS  Google Scholar 

  • Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) Biomems and nanotechnology based approaches for rapid detection of biological entities. J Rapid Methods Autom Microbiol 15:1–32

    CAS  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2:21–36

    Google Scholar 

  • Conde J, Dias JT, Grazú V, Moros M et al (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48

    Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    CAS  Google Scholar 

  • Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33

    CAS  Google Scholar 

  • Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    CAS  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20:1055–1058

    Google Scholar 

  • Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. PNAS 100:6297–6301 (Epub 2003 May 15)

    CAS  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810

    CAS  Google Scholar 

  • Firrao G, Moretti M, Ruiz-Rosquete M, Gobbi E, Locci R (2005) Nanobiotransducer for detecting flavescence doree phytoplasma. J Plant Pathol 87:101–107

    CAS  Google Scholar 

  • García M, Forbe T, Gonzalez E (2010) Potential application of nanotechnology in the agro-food sector. Ciência e Tecnologia de Alimentos 30:573–581

    Google Scholar 

  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN et al (2006) A biobarcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6:1293–1299

    CAS  Google Scholar 

  • Hervas M, Lopez MA, Escarpa A (2011) Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. The Analyst 136:2131–2138

    CAS  Google Scholar 

  • Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    CAS  Google Scholar 

  • James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    Google Scholar 

  • Jaynes WF, Zartman RE, Hudnall WH (2007) Aflatoxin B1 adsorption by clays from water and corn meal. Appl Clay Sci 36:197–205

    CAS  Google Scholar 

  • Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876

    Google Scholar 

  • Kashyap PL, Kumar S, Gurjar MS, Singh A et al (2013a) Phytopathogenomics in plant disease management: a paradigm shift. In: Prasad D, Ray DP (eds) Biotechnological approaches in crop protection. Biotech Book publsihers, New Delhi, pp 241–262

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013b) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    CAS  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, sustainable agriculture reviews 21. Springer, Basel. doi:10.1007/978-3-319-39306-3_8

    Chapter  Google Scholar 

  • Kaushik A, Solanki PR, Pandey MK, Ahmad S, Malhotra BD (2009) Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Appl Phys Lett 95:173703

    Google Scholar 

  • Kaushik A, Arya SK, Vasudev A, Bhansali S (2013) Recent advances in detection of ochratoxin-A. Open J Appl Biosens 2:1–11

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA et al (2014) Plant pathogen nanodiagnostic techniques: Forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Google Scholar 

  • Kumar S, Singh R, Kashyap PL, Srivastava AK (2013) Rapid detection and quantification of Alternaria solani in tomato. Sci Hortic 151:184–189

    CAS  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    CAS  Google Scholar 

  • Lin H-Y, Huang C-H, Lu S-H, Kuo I-T, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    CAS  Google Scholar 

  • Mahlein A-K (2016) Plant disease detection by imaging sensors—parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Google Scholar 

  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW et al (2010) Sensitive giant magnetoresistive based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25:1635–1639

    CAS  Google Scholar 

  • Mann SK, Kashyap PL, Sanghera GS, Singh G, Singh S (2008) RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2:110–126

    Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S et al (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    CAS  Google Scholar 

  • Nam JM, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933

    CAS  Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904

    CAS  Google Scholar 

  • Paniel N, Radoi A, Marty J-L (2010) Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk. Sensors 10:9439–9448

    CAS  Google Scholar 

  • Panini NV, Bertolino FA, Salinas E, Messina GA, Raba J (2010) Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems. Biochem Eng J 51:713

    Google Scholar 

  • Pimentel D, Inderjit (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature—Springer series in invasion ecology. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Prieto-Simon B, Noguer T, Campas M (2007) Emerging biotools for assessment of mycotoxins in the past decade. Trends Anal Chem 26:689–702

    CAS  Google Scholar 

  • Puzyr AP, Burov AE, Bondar VS, Trusov YN (2010) Neutralization of aflatoxin b1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russ 5:137–141

    Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR et al (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme linked-nanoparticles for aflatoxin M1 detection. Talanta 77:138–143

    CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A et al (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Google Scholar 

  • Savaliya R, Shah D, Singh R, Kumar A, Shanker R, Dhawan A, Singh S (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab 16:645–661

    CAS  Google Scholar 

  • Schwenkbier L, Pollok S, König S, Urban M et al (2015) Towards on-site testing of Phytophthora species. Anal Methods 7:211–217

    CAS  Google Scholar 

  • Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92

    Google Scholar 

  • Sharma A, Matharu Z, Sumana G, Solanki PR et al (2010) Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519:1213–1218

    CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Films 519:1156–1159

    CAS  Google Scholar 

  • Singh R, Kumar S, Kashyap PL, Srivastava AK, Mishra S et al (2014) Identification and characterization of microsatellite from Alternaria brassicicola to assess cross-species transferability and utility as a diagnostic marker. Mol Biotechnol 56:1049–1059

    CAS  Google Scholar 

  • Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389

    Google Scholar 

  • Stanisavljevic M, Son K, Vaculovicova M, Kizeka R, Adama V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74:562–574

    CAS  Google Scholar 

  • Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126

    CAS  Google Scholar 

  • Tothill IE (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4:361–374

    CAS  Google Scholar 

  • Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18

    CAS  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    CAS  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    CAS  Google Scholar 

  • Yalcin B, Otles S (2010) Nanobiosensor and food pathogen interaction mechanisms. Electron J Environ Agric Food Chem 9:1257–1273

    CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II 7982:513–516

    Google Scholar 

  • Zhao M-X, Zeng E-Z (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 10:171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, P.L., Kumar, S. & Srivastava, A.K. Nanodiagnostics for plant pathogens. Environ Chem Lett 15, 7–13 (2017). https://doi.org/10.1007/s10311-016-0580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0580-4

Keywords

Navigation