Skip to main content
Log in

Industrial organic contaminants: identification, toxicity and fate in the environment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Industrialization and urbanization in the more economically developed countries and also in emerging and developing nations have led to an intensive and still increasing use of water resources. The involved chemical contamination led to a deterioration of aquatic systems in many areas. Industries are important pollution sources and the discharged wastewaters may contain very diverse and potentially harmful organic compound groups. We therefore present here a comprehensive review of the current state of knowledge of organic contaminants from industrial wastewaters. The available studies proved the heterogenic chemical composition of industrial wastewaters, even from the same industry branches, and the presence of heterogenic organic contaminant mixtures from industrial sources in aquatic systems. We conclude that our knowledge of the chemical composition of industrial wastewaters and the occurrence of industrial organic contaminants in the environment is as yet very limited. A combination of chemical and toxicological methods enabled the identification of toxic organic constituents in industrial wastewaters. Chemical evaluations of industrial contamination linked to surveys of environmental impacts could relate toxic effects of field samples to the presence of specific contaminants. Exposure experiments in the field proved the bioaccumulation and toxicity of several industrial compounds. Ecological surveys in industrial areas combined with a comprehensive chemical characterization and toxicity evaluation are so far missing. Some of the identified organic contaminants are related to characteristic industrial production processes, and their presence in water, sediment or biota indicates the input of specific industrial wastewaters. Accordingly, these compounds can be used as industrial markers. We suggest the proceeding application of the marker concept, as markers are useful to verify the input of specific industrial wastewaters to aquatic systems and to investigate the spatial distribution of the emission. Such information helps to disentangle different emission sources for the subsequent investigation of potential impacts in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAS No.:

Unique identifier of a chemical, assigned by the Chemical Abstracts Service

CPE:

Chlorophenylethanol

DCPE:

Chlorophenyldichloroethanol

DBP:

Dichlorobenzophenone

DDA:

Bis(chlorophenyl)acetic acid

DDABE:

Bis(chlorophenyl)acetic acid n-butylester

DDAMA:

Bis(chlorophenyl)acetic acid N-methylamide

DDCN:

Bis(chlorophenyl)acetonitrile

DDD:

Bis(chlorophenyl)dichloroethane

DDE:

Bis(chlorophenyl)dichloroethene

DDMU:

Bis(chlorophenyl)chloroethene

DDT:

Bis(chlorophenyl)trichloroethane

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

GC/MS:

Gas chromatography–mass spectrometry

HCHs:

Hexachlorocyclohexanes

LAS:

Linear alkylbenzene sulfonates

MCPE:

Chlorophenylchloroethanol

PAHs:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PCDDs:

Polychlorinated dibenzo-p-dioxins

PCDFs:

Polychlorinated dibenzofurans

UNEP:

United Nations Environment Programme

References

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from puklp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  CAS  Google Scholar 

  • Alonso MC, Barceló D (1999) Tracing polar benzene—and naphthalene sulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray–mass spectrometry. Anal Chim Acta 400:211–231

    Article  CAS  Google Scholar 

  • Alonso MC, Castillo M, Barceló D (1999) Solid-phase extraction procedure of polar benzene—and naphthalene sulfonates in industrial effluents followed by unequivocal determination with ion-pair chromatography/electrospray–mass spectrometry. Anal Chem 71:2586–2593

    Article  CAS  Google Scholar 

  • Amaral OC, Otero R, Grimalt JO, Albaiges J (1996) Volatile and semi-volatile organochlorine compounds in tap and riverine waters in the area of influence of a chlorinated organic solvent factory. Water Res 30:1876–1884

    Article  CAS  Google Scholar 

  • Barron MG, Holder E (2003) Are exposure and ecological risks of PAHs underestimated at petroleum contaminated sites? Hum Ecol Risk Assess 9:1533–1545

    Article  CAS  Google Scholar 

  • Beg MU, Al-Muzaini S, Saeed T, Jacob PG, Beg KR, Al-Bahloul M, Al-Matrouk K, Al-Obaid T, Kurian A (2001) Chemical contamination and toxicity of sediment from a coastal area receiving industrial effluents in Kuwait. Arch Environ Contam Toxicol 41:289–297

    Article  CAS  Google Scholar 

  • Blacksmith Institute and Green Cross Switzerland (2011) The world’s worst toxic pollution problems: report 2011. http://www.worstpolluted.org/2011-report.html

  • Blanchard M, Teil MJ, Ollivon D, Legenti L, Chevreuil M (2004) Polycyclic aromatic hydrocarbons and polychlorobipheynls in wastewaters and sewage sludges from the Paris area (France). Environ Res 95:184–197

    Article  CAS  Google Scholar 

  • Bobeldijk I, Stoks PGM, Vissers JPC, Emke E, van Leerdam JA, Muilwijk B, Berbee R, Noij ThHM (2002) Surface and wastewater quality monitoring: combination of liquid chromatography with (geno)toxicity detection, diode array detection and tandem mass spectrometry for identification of pollutants. J Chromatogr A 970:167–181

    Article  CAS  Google Scholar 

  • Botalova O, Schwarzbauer J (2011) Geochemical characterization of organic pollutants in effluents discharged from various industrial sources to riverine systems. Water Air Soil Pollut 221:77–98

    Article  CAS  Google Scholar 

  • Botalova O, Schwarzbauer J, Frauenrath T, Dsikowitzky L (2009) Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res 43:3797–3812

    Article  CAS  Google Scholar 

  • Botalova O, Schwarzbauer J, Sandouk N (2011) Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites. Water Res 45:3653–3664

    Article  CAS  Google Scholar 

  • Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany)—a contribution to hazard assessment. Arch Environ Contam Toxicol 37:164–174

    Article  CAS  Google Scholar 

  • Brack W, Kind T, Schrader S, Möder M, Schüürmann G (2003) Polychlorinated naphthalenes in sediments from the industrial region of Bitterfeld. Environ Pollut 121:81–85

    Article  CAS  Google Scholar 

  • Castillo M, Barceló D (2001) Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection. Anal Chim Acta 426:253–264

    Article  CAS  Google Scholar 

  • Castillo M, Oubiña A, Barceló D (1998) Evaluation of ELISA kits followed by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry for the determination of organic pollutants in industrial effluents. Environ Sci Technol 32:2180–2184

    Article  CAS  Google Scholar 

  • Castillo M, Alonso MC, Riu J, Barceló D (1999a) Identification of polar, ionic, and highly water soluble organic pollutants in untreated industrial wastewaters. Environ Sci Technol 33:1300–1306

    Article  CAS  Google Scholar 

  • Castillo M, Barceló D, Pereira AS, Aquino Neto FR (1999b) Characterization of organic pollutants in industrial effluents by high-temperature gas chromatography–mass spectrometry. TrAC 18:26–36

    CAS  Google Scholar 

  • Castillo M, Alonso MC, Riu J, Reinke M, Klöter G, Dizer H, Fischer B, Hansen PD, Barceló D (2001) Identification of cytotoxic compounds in European wastewaters during a field experiment. Anal Chim Acta 426:265–277

    Article  CAS  Google Scholar 

  • Chen C-Y, Chen J-N, Chen S-D (1999) Toxicity assessment of industrial wastewater by microbial testing method. Water Sci Technol 39:139–143

    Article  Google Scholar 

  • De Lange HJ, Peeters ETHM, Harmsen J, Maas H, De Jonge J (2009) Seasonal variation of total and biochemically available concentrations of PAHs in a floodplain lake sediment has no effect on the benthic invertebrate community. Chemosphere 75:319–326

    Article  Google Scholar 

  • Drzyzga O, Jannsen S, Blotevogel KH (1995) Toxicity of diphenylamine and some of its nitrated and aminated derivatives to the luminescent bacterium Vibrio fischeri. Ecotoxicol Environ Saf 31:149–152

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Schwarzbauer J (2013) Organic contaminants from industrial wastewaters: Their identification, toxicity and fate in the environment. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutant diseases, remediation and recycling, Environmental Chemistry for a Sustainable World 4. Springer, Switzerland, pp 45–101

    Google Scholar 

  • Dsikowitzky L, Schwarzbauer J, Littke R (2004) The anthropogenic contribution to the organic load of the Lippe river (Germany), part II: quantification of specific organic contaminants. Chemosphere 57:1289–1300

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Nordhaus I, Jennerjahn T, Khrycheva P, Sivatharshan Y, Yuwono E, Schwarzbauer J (2011) Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar Pollut Bull 62:851–862

    Article  CAS  Google Scholar 

  • Ellis DD, Jone CM, Larson RA, Schaeffer D (1982) Organic constituents of mutagenic secondary effluents from wastewater treatment plants. Arch Contam Toxicol 11:373–382

    CAS  Google Scholar 

  • Field JA, Reed RL (1996) Nonylphenol polyethoxy carboxylate metabolites of nonionic surfactants in U.S. paper mill effluents, municipal sewage treatment plant effluents, and river waters. Environ Sci Technol 30:3544–3550

    Article  CAS  Google Scholar 

  • Fishbein L (1991) Chemicals used in the rubber industry. Sci Tot Environ 101:33–43

    Article  CAS  Google Scholar 

  • Fox ME, Whittle DM, Kaiser KLE (1977) Dehydroabietic acid accumulation by rainbow trout (Salmo gairdneri) exposed to kraft mill effluent. J Great Lake Res 3:155–158

    Article  CAS  Google Scholar 

  • Frische K, Schwarzbauer J, Ricking M (2011) Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. Chemosphere 81:500–508

    Article  Google Scholar 

  • Grigoriadou A, Schwarzbauer J, Georgakopoulos A (2008) Molecular indicators for pollution source identification in marine and terrestrial water of the industrial area of Kavala city, North Greece. Environ Pollut 151:231–242

    Article  CAS  Google Scholar 

  • James KJ, Stack MA (1997) Rapid determination of volatile organic compounds in environmentally hazardous wastewaters using solid phase microextraction. Fresenius J Anal Chem 358:833–837

    Article  CAS  Google Scholar 

  • Jenkins RL, Angus RA, McNatt H, Howell WM, Kemppainen JA, Kirk M, Wilson EM (2001) Identification of androstenedione in a river containing paper mill effluent. Environ Toxicol Chem 20:1325–1331

    Article  CAS  Google Scholar 

  • Jenkins RL, Wilson EM, Angus RA, Howell WM, Kirk M (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sc 73:53–59

    Article  CAS  Google Scholar 

  • Jungclaus GA, Games LM, Hltes RA (1976) Identification of trace organic compounds in tire manufacturing plant wastewaters. Anal Chem 48:1894–1896

    Article  CAS  Google Scholar 

  • Jungclaus GA, Lopez-Avila V, Hites RA (1978) Organic compounds in an industrial wastewater: a case study of their environmental impact. Environ Sci Technol 12:88–96

    Article  CAS  Google Scholar 

  • Keith LH (1974) Chemical characterization of industrial wastewaters by gas chromatography–mass spectrometry. Sci Tota Environ 3:87–102

    Article  CAS  Google Scholar 

  • Kinae N, Hashizume T, Makita T, Tomita I, Kimura I, Kanamori H (1981a) Studies on the toxicity of pulp and paper mill effluents—I. Mutagenicity of the sediment samples derived from Kraft paper mills. Water Res 15:17–24

    Article  Google Scholar 

  • Kinae N, Hashizume T, Makita T, Tomita I, Kimura I, Kanamori H (1981b) Studies on the toxicity of pulp and paper mill effluents—II. Mutagenicity of the extracts of the liver from spotted sea trout (Nibea mitsukurii). Water Res 15:25–30

    Article  CAS  Google Scholar 

  • Knepper TP, Karrenbrock F (2006) Pollutants as byproducts and degradation products of chemical synthesis. In: Hdb EnvChem vol 5, part L: 235–254, doi:10.1007/698_5_033

  • Knepper TP, Muller J, Wulff T, Maes A (2000) Unknown bisethylisooctanollactone isomers in industrial waste water: isolation, identification and occurrence in surface water. J Chromatogr A 889:245–252

    Article  CAS  Google Scholar 

  • Kronimus A, Schwarzbauer J, Dsikowitzky L, Heim S, Littke R (2004) Anthropogenic organic contaminants in sediments of the Lippe river, Germany. Water Res 38:3473–3484

    Article  CAS  Google Scholar 

  • Kungolos A (2005a) Application of microbiotests and activated sludge respirometry for the evaluation of industrial wastewater toxicity. Bull Environ Contam Toxicol 74:801–808

    Article  CAS  Google Scholar 

  • Kungolos A (2005b) Evaluation of toxic properties of industrial wastewater using on-line respirometry. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:869–880

    Article  CAS  Google Scholar 

  • Kwon J-H, Kwon J-W, Kim K, Kim Y-H (2003) Identification of a water pollutant 2-amino-6,7-dichlorobenzothiazole, at a River near a textile industrial complex in Korea. Bull Environ Contam Toxicol 70:54–62

    Article  CAS  Google Scholar 

  • Langston WJ, Pope ND, Jonas PJC, Nikitic C, Field MDR, Dowell B, Shillabeer N, Swarbrick RH, Brown AR (2010) Contaminants in fine sediments and their consequences for biota of the Severn Estuary. Mar Pollut Bull 61:68–82

    Article  CAS  Google Scholar 

  • Latorre A, Rigol A, Lacorte S, Barceló D (2005) Organic compounds in paper mill wastewaters. Handb Environ Chem 5(Part O):25–51

    Google Scholar 

  • Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208

    Article  CAS  Google Scholar 

  • Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) LC–MS–MS analysis and occurrence of octyl-and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66:690–699

    Article  CAS  Google Scholar 

  • Lopez-Avila V, Hites RA (1980) Organic compounds in an industrial wastewater their transport into sediments. Environ Sci Technol 14:1382–1390

    Article  CAS  Google Scholar 

  • Maguire RJ (1992) Occurrence and persistence of dyes in a Canadian River. Water Sci Technol 25:264–270

    Google Scholar 

  • Marti N, Aguado D, Segovia-Martinez L, Bouzas A, Seco A (2011) Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Mar Poll Bull 62:615–625

    Article  CAS  Google Scholar 

  • Matthiessen P, Law RJ (2002) Contaminants and their effects on estuarine and coastal organisms in the United Kingdom in the late twentieth century. Environ Pollut 120:739–757

    CAS  Google Scholar 

  • Meriläinen P, Oikari A (2008) Uptake of organic xenobiotics by benthic invertebrates from sediment contaminated by the pulp and paper industry. Water Res 42:1715–1725

    Article  Google Scholar 

  • Nestmann ER, Lee EGH, Matula TI, Douglas GR, Mueller JC (1980) Mutagenicity of constituents identified in pulp and paper mill effluents using the salmonella/mammalian-microsome assay. Mutat Res 79:203–212

    Article  CAS  Google Scholar 

  • Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, Katsuhara T, Kiyokawa K, Tezuka M, Oguri A, Sugimura T, Wakabayashi K (1997) Isolation and chemical–structural determination of a novel aromatic amine mutagen in water from the Nishitakase River in Kyoto. Chem Res Toxicol 10:1061–1066

    Article  CAS  Google Scholar 

  • Oguri A, Shiozawa T, Terao Y, Nukaya H, Yamashita J, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K (1998) Identification of a 2-phenylbenzotriazole (PBTA)-type mutagen, PBTA-2, in water from the Nishitakase River in Kyoto. Chem Res Toxicol 11:1195–1200

    Article  CAS  Google Scholar 

  • Oikari A, Holmbom B, Ånäs E, Miilunpalo M, Kruzynski G, Castrén M (1985) Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: distribution in water, and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat Toxicol 6:219–239

    Article  CAS  Google Scholar 

  • Parrott JL, van den Heuwel MR, Hewitt LM, Baker MA, Munkittrick KR (2000) Isolation of MFO inducers from tissues of white suckers caged in bleached kraft mill effluent. Chemosphere 41:1083–1089

    Article  CAS  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda MJ, Barceló D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey of new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549–562

    Article  CAS  Google Scholar 

  • Puig A, Ormad P, Roche P, Sarasa J, Gimeno E, Ovelleiro JL (1996) Wastewater from the manufacture of rubber vulcanization accelerators: characterization, downstream monitoring and chemical treatment. J Chromatogr A 733:511–522

    Article  CAS  Google Scholar 

  • Reemtsma T, Jekel M (1997) Dissolved organics in tannery wastewaters and their alteration by a combined anaerobic and aerobic treatment. Water Res 31:1035–1046

    Article  CAS  Google Scholar 

  • Ricciardi F, Bonnineau C, Faggiano L, Geiszinger A, Guasch H, Lopez-Doval J, Muñoz I, Proia L, Ricart M, Romanί A, Sabater S (2009) Is chemical contamination linked to the diversity of biological communities in rivers? Trends Anal Chem 28:592–602

    Article  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Societ 14:32–63

    Google Scholar 

  • Rodriguez DM, Wrobel K, Jimenez MGG (2004) Determination of 2-Mercaptobenzothiazole (MBT) in tannery wastewater by high performance liquid chromatography with amperometric detection. Bull Environ Contam Toxicol 73:818–824

    Article  CAS  Google Scholar 

  • Saiz-Salinas JI (1997) Evaluation of adverse biological effects induced by pollution in the Bilbao Estuary (Spain). Environ Pollut 96:351–359

    Article  CAS  Google Scholar 

  • Schäfer RB, Kefford BJ, Metzeling L, Liess M, Burgert S, Marchant R, Pettigrove V, Goonan P, Nugegoda D (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci Tot Environ 409:2055–2063

    Article  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Sellström U, Jansson B (1995) Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere 31:3085–3092

    Article  Google Scholar 

  • Shiozawa T, Tada A, Nukaya H, Watanabe T, Takahashi Y, Asanoma M, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K, Terao Y (2000) Isolation and identification of a new 2-phenylbenzotriazole-type mutagen (PBTA-3) in the Nikko River in Aichi, Japan. Chem Res Toxicol 13:535–540

    Article  CAS  Google Scholar 

  • Soimasuo R, Jokinen I, Kukkonen J, Petänen T, Ristola T, Oikari A (1995) Biomarker responses along a pollution gradient: effects of pulp and paper mill effluents on caged whitefish. Aquat Toxicol 31:329–345

    Article  CAS  Google Scholar 

  • Spanggord RJ, Gibson BW, Keck RG, Thomas DW (1982) Effluent analysis of wastewater generated in the manufacture of 2, 4, 6-trinitrotoluene. 1. Characterization study. Environ Sci Technol 16:229–232

    Article  CAS  Google Scholar 

  • Speight JG (2007) The chemistry and technology of petroleum (3rd edn). CRC Press, Taylor & Francis Group, Boca Raton. ISBN.0-8493-9067-2

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Swartz CD, Donnelly KC, Islamzadeh A, Rowe GT, Rogers WJ, Palatnikov GM, Mekhtiev AA, Kasimov R, McDonald TJ, Wicklife JK, Presley BJ, Bickham JW (2003) Chemical contaminants and their effects in fish and wildlife from the industrial zone of Sumgayit, Republic of Azerbaijan. Ecotoxicology 12:509–521

    Article  CAS  Google Scholar 

  • Takada H, Eganhouse RP (1998) Molecular markers of anthropogenic waste. In: Meyers RA (ed) Encyclopedia of environmental analyses and remediation. Wiley, New York, pp 2883–2940

    Google Scholar 

  • Terasaki M, Fukazawa H, Tani Y, Makino M (2008) Organic pollutants in paper-recycling process water discharge areas: first detection and emission in aquatic environment. Environ Pollut 151:53–59

    Article  CAS  Google Scholar 

  • Terasaki M, Jozuka K, Makino M (2012) Identification and accumulation of aromatic sensitizers in fish from paper recycling in Japan. Environ Tox Chem 31(1202):1208

    Google Scholar 

  • Terzic S, Ahel M (2011) Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Environ Pollut 159:557–566

    Article  CAS  Google Scholar 

  • Thompson B, Adelsbach T, Brown C, Hunt J, Kuwabara J, Neale J, Ohlendorf H, Schwarzbach S, Spies R, Taberski K (2007) Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ Res 105:156–174

    Article  CAS  Google Scholar 

  • Umbuzeiro GdA, Freeman HS, Warren SH, Oliveira DPd, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    Article  CAS  Google Scholar 

  • UNEP (2012) 21 Issues for the 21st Century: Result of the UNEP Foresight Process on Emerging Environmental Issues. Alcamo J, Leonard SA (Eds.). United Nations Environment Programme (UNEP), Nairobi, Kenya, 56 pp

  • Venturini N, Muniz P, Bícego MC, Martins CC, Tommasi LR (2008) Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: integrating chemical and biological multivariate data. Estuar Coast Shelf Sci 78:457–467

    Article  CAS  Google Scholar 

  • Walsh AR, O`Halloran J (1997) The toxicity of leather tannery effluent to a population of the blue mussel Mytilus edulis (L.). Ecotoxiciol 6:137–152

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    Article  CAS  Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endrocinology 135:175–182

    CAS  Google Scholar 

  • Worawit W (2006) Characterization and fenton treatment of hazardous organic substances in para rubber industrial wastewater in Southern Thailand. Ph.D. thesis, Chulalongkorn University. http://cuir.car.chula.ac.th/handle/123456789/8327

  • Yasuhara A, Shiraishi H, Tsuji M, Okuno T (1981) Analysis of organic substances in highly polluted river water by mass spectrometry. Environ Sci Technol 15:570–573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Dsikowitzky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dsikowitzky, L., Schwarzbauer, J. Industrial organic contaminants: identification, toxicity and fate in the environment. Environ Chem Lett 12, 371–386 (2014). https://doi.org/10.1007/s10311-014-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0467-1

Keywords

Navigation