Skip to main content
Log in

Characterization and performance of nanofiltration membranes

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The availability of clean water has become a critical problems facing the society due to pollution by human activities. Most regions in the world have high demands for clean water. Supplies for freshwater are under pressure. Water reuse is a potential solution for clean water scarcity. A pressure-driven membrane process such as nanofiltration has become the main component of advanced water reuse and desalination systems. High rejection and water permeability of solutes are the major characteristics that make nanofiltration membranes economically feasible for water purification. Recent advances include the prediction of membrane performances under different operating conditions. Here, we review the characterization of nanofiltration membranes by methods such as scanning electron microscopy, thermal gravimetric analysis, attenuated total reflection Fourier transform infrared spectroscopy, and atomic force microscopy. Advances show that the solute rejection and permeation performance of nanofiltration membranes are controlled by the composition of the casting solution of the active layer, cross-linking agent concentration, preparation method, and operating conditions. The solute rejection depends strongly on the solute type, which includes charge valency, diffusion coefficient, and hydration energy. We also review the analysis of the surface roughness, the nodule size, and the pore size of nanofiltration membranes. We also present a new concept for membrane characterization by quantitative analysis of phase images to elucidate the macro-molecular packing at the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbari A, Homayonfal M, Jabbari V (2010) Synthesis and characterization of composite polysulfone membranes for desalination in nanofiltration technique. Water Sci Technol 62:2655–2663

    CAS  Google Scholar 

  • Albrecht TR, Dovek MM, Lang CA, Grütter P, Quate CF, Kuan SWJ, Frank CW, Pease RFW (1988) Imaging and modification of polymers by scanning tunnelling and atomic force microscopy. J Appl Phys 64:1178–1184

    CAS  Google Scholar 

  • Baker RW (2004) Membrane technology and applications. Wiley, Chichester, NY, pp 237–238

    Google Scholar 

  • Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8

    CAS  Google Scholar 

  • Bauman M, Košak A, Lobnik A, Petrini I, Luxbacher T (2013) Nanofiltration membranes modified with alkoxysilanes: surface characterization using zeta-potential. Colloids Surf A 422:110–117

    CAS  Google Scholar 

  • Belwalkar A, Grasing E, Van Geertruyden W, Huang Z, Misiolek WZ (2008) Effect of processing parameters on pore structure and thickness of anodic aluminium oxide (AAO) tubular membranes. J Membr Sci 319(1–2):192–198

    CAS  Google Scholar 

  • Boricha AG, Murthy ZVP (2008) Preparation and performance of N, O-carboxymethyl chitosan-polyether sulfone composite nanofiltration membrane in the separation of nickel ions from aqueous solutions. J Appl Poly Sci 110:3596–3605

    CAS  Google Scholar 

  • Bouranene S, Fievet P, Szymczyk A, Samar MEH, Vidonne A (2008) Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. J Membr Sci 325:150–157

    CAS  Google Scholar 

  • Boussu K, Van der Bruggen B, Volodin A, Snauwaert J, Van Haesendonck C, Vandecasteele C (2005) Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. J Colloid Interface Sci 286:632–638

    CAS  Google Scholar 

  • Boussu K, Belpaire A, Volodin A, Van Haesendonck C, Van der Meeren P, Vandecasteele C, Van der Bruggen B (2007) Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J Membr Sci 280:220–230

    Google Scholar 

  • Bowen WR, Doneva TA (2000a) Atomic force microscopy characterization of ultrafiltration membranes: correspondence between surface pore dimensions and molecular weight cut-off. Surf Interface Anal 29:544–547

    CAS  Google Scholar 

  • Bowen WR, Doneva TA (2000b) Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion. Desalination 129(10):163–172

    CAS  Google Scholar 

  • Bowen WR, Hilal N, Lovitt RW, Williams PM (1996) Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution. J Membr Sci 110:229–232

    CAS  Google Scholar 

  • Brant JA, Johnson KM, Childress AE (2006) Examining the electrochemical properties of a nanofiltration membrane with atomic force microscopy. J Membr Sci 276:286–294

    CAS  Google Scholar 

  • Butt H-J, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 72–77

    Google Scholar 

  • Chakraborty S, Purkait MK, DasGupta S, De S, Basu JK (2003) Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep Purif Technol 31:141–151

    CAS  Google Scholar 

  • Chaudhari LB, Murthy ZVP (2013) Preparation, characterization, and performance of sulfated chitosan/polyacrylonitrile composite nanofiltration membranes. J Dispers Sci Technol 34(3):389–399

    CAS  Google Scholar 

  • Chilcott TC, Chan M, Gaedt L, Nantawisarakul T, Fane AG, Coster HGL (2002) Electrical impedance spectroscopy characterization of conducting membranes-1. Theory. J Membr Sci 195(2):153–167

    CAS  Google Scholar 

  • Childress AE, Deshmukh SS (1998) Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes. Desalination 118:167–174

    Google Scholar 

  • Chung CV, Buu NQ, Nguyen HC (2005) Influence of surface charge and solution pH on the performance characteristics of a nanofiltration membrane. Sci Technol Adv Mater 6:246–250

    CAS  Google Scholar 

  • Coats AW, Redfern JP (1963) Thermogravimetric analysis: a review. Analyst 88:906–924

    CAS  Google Scholar 

  • Crock CA, Rogensues AR, Shan W, Tarabara VV (2013) Polymer nanocomposites with grapheme-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res 47:3984–3996

    CAS  Google Scholar 

  • Czaplewski KF, Hupp JT, Snurr RQ (2001) Molecular squares as molecular sieves: size-selective transport through porous-membrane-supported thin-film materials. Adv Mater 13:1895–1897

    CAS  Google Scholar 

  • Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy SJ (2010) Characterizating the surface charge of synthetic nano membranes by the streaming potential method. J Colloid Interface Sci 348(1):85–95

    CAS  Google Scholar 

  • Dèon S, Escoda A, Fievet P (2011) A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem Eng Sci 66:2823–2832

    Google Scholar 

  • Dietz P, Hansma PK, Inacker O, Lehmann H-D, Herrmann K-H (1992) Surface pore structures of micro- and ultra-filtration membranes imaged with the atomic force microscope. J Membr Sci 65:101–111

    CAS  Google Scholar 

  • Drazevic E, Bason S, Kosutic K, Freger V (2012) Enhanced partitioning and transport of phenolic micropollutants within polyamide composition membranes. Environ Sci Technol 46(6):3377–3383

    CAS  Google Scholar 

  • Escoda A, Lanteri Y, Fievet P, Dèon S, Szymczyk A (2010) Determining the dielectric constant inside pores on nanofiltration membranes from membrane potential measurements. Langmuir 26:14628–14635

    CAS  Google Scholar 

  • Freger V, Gilron J, Belfer S (2002) TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J Membr Sci 209:283–292

    CAS  Google Scholar 

  • Gaedt L, Chilcott TC, Chan M, Nantawisarakul T, Fane AG, Coster HGL (2002) Electrical impedance spectroscopy characterization of conducting membranes-11. Experimental. J Membr Sci 195(2):169–180

    CAS  Google Scholar 

  • Gasch J, Leopold CS, Knoth H (2013) Positively charged polyethersulfone membranes: the influence of furosemide on the zeta potential. J Membr Sci Technol 3(1):121–125

    Google Scholar 

  • Gin DL, Gu WQ, Pindzola BA, Zhou WJ (2001) Polymerized lyotropic liquid crystal assemblies for materials applications. Acc Chem Res 34:973–980

    CAS  Google Scholar 

  • Gin DL, Bara JE, Noble RD, Elliott BJ (2008) Polymerized lyotropic liquid crystal assemblies for membrane applications. Macromol Rapid Commun 29:367–389

    CAS  Google Scholar 

  • Gryta M, Bastrzyk J, Lech D (2012) Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements. Pol J Chem Technol 14(3):97–104

    Google Scholar 

  • Hegde C, Isloor AM, Ganesh BM, Ismail FA, Abdullah MS, Ng BC (2012) Performance of PS/PIMA/PPEES nanofiltration membranes before and after alkali treatment for filtration of CaCl2 and NaCl. Nano Hybrids 1:99–118

    CAS  Google Scholar 

  • Hilal N, Al-Khatib L, Atkin BP, Kochkodan V, Potapchenko N (2003a) Photochemical modification of membrane surfaces for (bio) fouling reduction: a nano-scale study using AFM. Desalination 158:65–72

    CAS  Google Scholar 

  • Hilal N, Mohammad AW, Atkin B, Darwish NA (2003b) Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: a review. Desalination 157(1–3):137–144

    CAS  Google Scholar 

  • Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M (2004) A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170:281–308

    CAS  Google Scholar 

  • Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW (2005a) Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 177(1–3):187–199

    CAS  Google Scholar 

  • Hilal N, Al-Zoubi H, Mohammad AW, Darwish NA (2005b) Nanofiltration of highly concentrated salt solutions up to sea water salinity. Desalination 185:315–326

    Google Scholar 

  • Ho C-C, Zydney AL (1999) Effect of membrane morphology on the initial rate of protein fouling during microfiltration. J Membr Sci 155:261–275

    CAS  Google Scholar 

  • Hoek EMV, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19:4836–4847

    CAS  Google Scholar 

  • Hoover LA, Schiffman JD, Elimelech M (2013) Nanofibers in thin-film composite membrane support layers: enabling expanded application of forward and pressure retarded osmosis. Desalination 308:73–81

    CAS  Google Scholar 

  • Huisman IH, Pradanos P, Hernandez A (2000) The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J Membr Sci 179:79–90

    CAS  Google Scholar 

  • Jucker C, Clark MM (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J Membr Sci 97:37–52

    CAS  Google Scholar 

  • Khayet M, Feng CY, Matsuura T (2003) Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules. J Membr Sci 213:159–180

    CAS  Google Scholar 

  • Khayet M, Khulbe KC, Matsuura T (2004) Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. J Membr Sci 238:199–211

    CAS  Google Scholar 

  • Khulbe KC, Matsuura TS (2000) Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy: a review. Polymer 41:1917–1935

    CAS  Google Scholar 

  • Khulbe KC, Feng CY, Matsuura TS (2008) Synthetic polymeric membranes characterization by atomic force microscopy. Springer, Berlin, p 17

    Google Scholar 

  • Kim J, Van Der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2225–2349

    Google Scholar 

  • Kim JY, Lee HK, Kim SC (1999) Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy. J Membr Sci 163:159–166

    CAS  Google Scholar 

  • Kim Y, Rana D, Matsuura T, Chung W-J, Khulbe KC (2010) Relationship between surface structure and separation performance of poly(ether sulfone) ultra-filtration membranes blended with surface modifying macromolecules. Sep Purif Technol 72(2):123–132

    CAS  Google Scholar 

  • Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin, pp 59–60

    Google Scholar 

  • Kwak S-Y, Ihm DW (1999) Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (RO) membranes. J Membr Sci 158:143–153

    CAS  Google Scholar 

  • Kwak S, Yeom M-O, Roh IJ, Kim DY, Kim J–J (1997) Correlations of chemical structure, atomic force microscopy (AFM) morphology, and reverse osmosis (RO) characteristics in aromatic polyester high-flux RO membranes. J Membr Sci 132:183–191

    CAS  Google Scholar 

  • Lapointe JF, Gauthier SF, Pouliot Y, Bouchard C (2005) Fouling of a nanofiltration membrane by a beta-lactoglobulin tryptic hydrolysate: impact on the membrane sieving and electrostatic properties. J Membr Sci 253:89–102

    CAS  Google Scholar 

  • Lawrence ND, Perera JM, Iyer M, Hickey MW, Stevens GW (2006) The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes. Sep Purif Technol 48(2):106–112

    CAS  Google Scholar 

  • Lee E, Lee S, Hong S (2010) A new approach to the characterization of reverse osmosis membrane by dynamic hysteresis. Desalin Water Treat 18:257–263

    CAS  Google Scholar 

  • Lee S, Lee E, Elimelech M, Hong S (2011) Membrane characterization by dynamic hysteresis: measurements, mechanisms, and implications for membrane fouling. J Membr Sci 366:17–24

    CAS  Google Scholar 

  • Li NN, Fane AG, Winston Ho WS, Matsuura T (2008) Advance membrane technology and application. Wiley, New York, p 288

    Google Scholar 

  • Linh NTB, Lee KH, Lee BT (2011) A novel photoactive nano-filtration module composed of a TiO2 loaded PVA nano-fibrous membrane on sponge Al2O3 scaffolds and Al2O3-(m-ZrO2)/t-ZrO2 composites. Mater Trans 52(7):1452–1456

    Google Scholar 

  • Lopes CN, Petrus JCC, Riella HG (2005) Color and COD retention by nanofiltration membranes. Desalination 172:77–83

    CAS  Google Scholar 

  • Mansourpanah Y, Madaeni SS, Rahimpour A, Farhadian A, Taheri AH (2009) Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability. J Membr Sci 330:297–306

    CAS  Google Scholar 

  • Manttari M, Pihlajamaki A, Nystom M (2006) Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J Membr Sci 280:311–320

    Google Scholar 

  • Mierzwa JC, Vercitis CD, Carvalho J, Arieta V, Verlage M (2012) Anion dopant effects on the structure and performance polyethersulfone membranes. J Membr Sci 421:91–102

    Google Scholar 

  • Mohammed AW, Takriff MS (2003) Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes. Desalination 157:105–111

    Google Scholar 

  • Montalvillo M, Silva V, Palacio L, Hernàndez A, Pràdanos P (2011) Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes. Desalin Water Treat 27:25–30

    CAS  Google Scholar 

  • Mulder M (1996) Basic principles of membrane technology. Kluwer, Dordrecht, pp 162–163

    Google Scholar 

  • Otero JA, Mazarrasa O, Villasante J, Silva V, Pràdanos P, Calvo JI, Hernàndez A (2008) Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 309:17–27

    CAS  Google Scholar 

  • Park J-S, Chilcott TC, Coster HGL, Moon S-H (2005) Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data. J Membr Sci 246(2):137–144

    CAS  Google Scholar 

  • Park S-J, Cheedrala RV, Diallo MS, Kim C, Kim IS, Goddard WA (2012) Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. J Nanopart Res 14:884–898

    Google Scholar 

  • Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    CAS  Google Scholar 

  • Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83:81–150

    CAS  Google Scholar 

  • Qi J, Wang Y-Q, Qiu Y-R (2013) Electrokinetic phenomena of poly (vinyl butyral) hollow fiber membranes in different electrolyte solutions. J Cent South Univ 20:1490–1495

    CAS  Google Scholar 

  • Rafael T (2004) Line energy and the relation between advancing, receding and the young contact angles. Langmuir 20(18):7659–7663

    Google Scholar 

  • Rahimpour A, Rajaeian B, Hosienzadeh A, Madaeni SS, Ghoreishi F (2011) Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes. Desalination 265:190–198

    CAS  Google Scholar 

  • Rana D, Matsuura T, Narbaitz RM, Feng C (2005) Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes. J Membr Sci 249:103–112

    CAS  Google Scholar 

  • Rosa MJ, de Pinho MN (1997) Membranes surface characterization by contact angle measurements using the immersed method. J Membr Sci 131:167–180

    CAS  Google Scholar 

  • Sayed Razavi SK, Harris JL, Sherkat F (1996) Fouling and cleaning of membranes in the ultrafiltration of the aqueous extract of soy flour. J Membr Sci 114:93–104

    CAS  Google Scholar 

  • Semião AJC, Habimana H, Cao H, Heffernan R, Safari A, Casey E (2013) The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes. Water Res 47:2909–2920

    Google Scholar 

  • Shenvi SS, Rashid SA, Ismail AF, Kassim MA, Isloor AM (2013) Preparation and characterization of PPEES/chitosan composite nanofiltration membrane. Desalination 315:135–141

    CAS  Google Scholar 

  • Shim YK, Chellam S (2007) Steric and electrostatic interactions govern nanofiltration of amino acids. Biotechnol Bioeng 98:451–461

    CAS  Google Scholar 

  • Shim Y, Lee HJ, Lee S, Moon SH, Cho J (2002) Effects of natural organic matter and ionic species on membrane surface charge. Environ Sci Technol 36:3864–3871

    CAS  Google Scholar 

  • Shirazi S, Lin C-J, Chen D (2010) Inorganic fouling of pressure-driven membrane processes—a critical review. Desalination 250:236–248

    CAS  Google Scholar 

  • Simon A, Price WE, Nghiem LD (2013a) Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Sep Purif Technol 113:42–50

    CAS  Google Scholar 

  • Simon A, Price WE, Nghiem LD (2013b) Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes. J Membr Sci 432:73–82

    CAS  Google Scholar 

  • Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127

    CAS  Google Scholar 

  • Stawikowska J, Livingston AG (2013) Assessment of atomic force microscopy for characterization of nanofiltration membranes. J Membr Sci 425:58–70

    Google Scholar 

  • Tu K, Chivas A, Nghiem LD (2011) Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes. Desalination 279(1–3):269–277

    CAS  Google Scholar 

  • Uyak V, Koyuncu I, Oktem I, Cakmakci M, Toroz I (2008) Removal of trihalomethanes from drinking water by nanofiltration membranes. J Hazard Mater 152:789–794

    CAS  Google Scholar 

  • Väisänen P, Bird MR, Nyström M (2002) Treatment of UF membranes with simple and formulated cleaning agents. Food Bioprod Process 80:98–108

    Google Scholar 

  • Vezzani D, Bandini S (2002) Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desalination 149:477–483

    CAS  Google Scholar 

  • Vilaseca M, Mateo E, Palacio L, Pradanos P, Hernandez A, Paniagua A, Coronas J, Santamaria J (2004) AFM characterization of the growth of MFI-type zeolite films on alumina substrates. Microporous Mesoporous Mater 71:33–37

    CAS  Google Scholar 

  • Water research foundation. EPA (2012) Advancing the science of water. Web report #4102

  • Wyart Y, Georges G, Deumiè C, Amra C, Moulin P (2008) Membrane characterization by microscopic methods: multiscale structure. J Membr Sci 315:82–92

    CAS  Google Scholar 

  • Xingwei Y, Zhi W, Juan Z, Fang Y, Shichun L, Jixiao W, Shichang W (2011) An Effective method to improve the performance of fixed carrier membrane via incorporation of CO2-selective adsorptive silica nanoparticles. Chin J Chem Eng 19(5):821–832

    Google Scholar 

  • Xiuli Y, Hongbin C, Xiu W, Yongxin Y (1998) Morphology and properties of hollow fiber membrane made by PAN mixing with small amount of PVDF. J Membr Sci 146:179–184

    Google Scholar 

  • Xueli G, Haizeng W, Jian W, Xing H, Congjie G (2013) Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance. J Membr Sci 445:146–155

    Google Scholar 

  • Zeman L, Denault L (1992) Characterization of microfiltration membranes by image analysis of electron micrographs: part I. Method development. J Membr Sci 71:221–231

    CAS  Google Scholar 

  • Zeng Z, Xiao X, Gui Z, Li L (1997) AFM study on surface morphology of Al2O3–SiO2–TiO2 composite ceramic membranes. J Membr Sci 136:153–160

    CAS  Google Scholar 

  • Zhang Y, Xu T (2006) An experimental investigation of streaming potential through homogeneous ion exchange membranes. Desalination 190(1–3):256–266

    CAS  Google Scholar 

  • Zhao K, Jia J (2012) Dielectric analysis of multi-layer structure of nanofiltration membrane in electrolyte solutions: ion penetrability, selectivity and influence of pH. J Colloid Interface Sci 386(1):16–17

    CAS  Google Scholar 

  • Zhao K, Li Y (2006) Dielectric characterization of a nanofiltration membrane in electrolyte solutions: its double-layer structure and ion permeation. J Phys Chem B 110(6):2755–2763

    CAS  Google Scholar 

  • Zhou M, Kidd TJ, Noble RD, Gin DL (2005) Supported lyotropic liquid-crystal polymer membranes: promising materials for molecular-size-selective aqueous nanofiltration. Adv Mater 17:1850–1853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluranti Agboola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agboola, O., Maree, J. & Mbaya, R. Characterization and performance of nanofiltration membranes. Environ Chem Lett 12, 241–255 (2014). https://doi.org/10.1007/s10311-014-0457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0457-3

Keywords

Navigation