Skip to main content
Log in

Epigenetische Aspekte der Reproduktionsmedizin

Epigenetic aspects of reproductive medicine

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Hintergrund

Assistierte Reproduktionstechniken (ART) sind mit einem erhöhten Risiko perinataler Probleme und angeborener Fehlbildungen assoziiert. Zudem scheinen seltene Imprinting-Erkrankungen wie das Beckwith-Wiedemann-Syndrom (BWS) und das Angelman-Syndrom (AS) nach ART häufiger aufzutreten.

Fragestellung

Im vorliegenden Beitrag sollen die epigenetischen und phänotypischen Effekte von ART beim Menschen und im Tiermodell dargestellt werden.

Material und Methoden

Die Ergebnisse von Grundlagenarbeiten beim Menschen und im Tiermodell werden zusammengefasst und diskutiert.

Ergebnisse

Die Inzidenz von Imprinting-Erkrankungen beim Menschen nach ART ist eindeutig erhöht. Der kausale Zusammenhang mit den ART selbst und/oder der Infertilität/Subfertilität der Paare ist noch nicht endgültig geklärt. ART-induzierte Effekte auf die Imprint-Etablierung in Oozyten und die epigenetische Reprogrammierung nach der Befruchtung werden in Tiermodellen häufiger als beim Menschen beobachtet.

Schlussfolgerungen

Die bisherigen Untersuchungen beim Menschen und in Tiermodellen haben wichtige Hinweise auf epigenetische Effekte von ART geliefert. Sie beschränken sich im Wesentlichen auf das Auftreten von Imprinting-Erkrankungen bzw. die Methylierung geprägter Gene. Weitere Studien auf der Basis hochmoderner genomweiter Analysetechniken an Tiermodellen und beim Menschen, insbesondere an Kindern aus ART-Schwangerschaften, sind notwendig, um die Effekte von ART auf die Gesundheit und das Epigenom detaillierter charakterisieren und mechanistisch verstehen zu können.

Abstract

Background

Assisted reproductive techniques (ART) are associated with an increased risk for perinatal problems and congenital malformations. In addition, imprinting diseases such as Beckwith–Wiedemann syndrome (BWS) and Angelman syndrome (AS) seem to occur more frequently after ART.

Objective

The aim of the present work is to describe the epigenetic and phenotypic effects of ART in humans and animal models.

Materials and methods

Results from basic studies in humans and animal models are summarized and discussed.

Results

The incidence of imprinting diseases in humans after ART is definitely increased. The causal relationship with the ART themselves and/or the infertility/subfertility of the couples has not yet been clarified. ART-induced epigenetic effects on imprint establishment in oocytes and epigenetic reprogramming after fertilization are more frequently observed in animal models than in humans.

Conclusion

Previous work in humans and animal models have provided important evidence on the epigenetic effects of ART and were essentially limited to the occurrence of imprinting diseases and the methylation analysis of imprinted genes, respectively. Further studies based on modern genome-wide analysis techniques are required in animal models and humans particularly focusing on children from ART pregnancies to better characterize and mechanistically understand the effects of ART on health outcome and the epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Denomme MM, Mann MR (2013) Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144:393–409

    Article  Google Scholar 

  2. Inbar-Feigenberg M, Choufani S, Butcher DT et al (2013) Basic concepts of epigenetics. Fertil Steril 99:607–615

    Article  CAS  PubMed  Google Scholar 

  3. Saitou M, Kagiwada S, Kurimoto K (2012) Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139:15–31

    Article  CAS  PubMed  Google Scholar 

  4. Montfoort AP van, Hanssen LL, Sutter P de et al (2012) Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 18:171–197

    Article  PubMed Central  PubMed  Google Scholar 

  5. Vermeiden JP, Bernardus RE (2013) Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil Steril 99:642–651

    Article  PubMed  Google Scholar 

  6. Fauque P (2013) Ovulation induction and epigenetic anomalies. Fertil Steril 99:616–623

    Article  CAS  PubMed  Google Scholar 

  7. Huang JC, Lei ZL, Shi LH et al (2007) Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem Biophys Res Commun 354:77–83

    Article  CAS  PubMed  Google Scholar 

  8. Chen SL, Shi XY, Zheng HY et al (2010) Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos. Fertil Steril 94:2356–2358, 2358.e1

    Article  CAS  PubMed  Google Scholar 

  9. Ibala-Romdhane S, Al-Khtib M, Khoueiry R et al (2011) Analysis of H19 methylation in control and abnormal human embryos, sperm and oocytes. Eur J Hum Genet 19:1138–1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dumoulin JC, Land JA, Van Montfoort AP et al (2010) Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod 25:605–612

    Article  PubMed  Google Scholar 

  11. Eaton JL, Lieberman ES, Stearns C et al (2012) Embryo culture media and neonatal birthweight following IVF. Hum Reprod 27:375–379

    Article  CAS  PubMed  Google Scholar 

  12. Vergouw CG, Kostelijk EH, Doejaaren E et al (2012) The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF. Hum Reprod 27:2619–2626

    Article  PubMed  Google Scholar 

  13. Carrasco B, Boada M, Rodríguez I et al (2013) Does culture medium influence offspring birth weight? Fertil Steril 100:1283–1288

    Article  PubMed  Google Scholar 

  14. Lin S, Li M, Lian Y et al (2013) No effect of embryo culture media on birthweight and length of newborns. Hum Reprod 28:1762–1767

    Article  CAS  PubMed  Google Scholar 

  15. Eskild A, Monkerud L, Tanbo T (2013) Birthweight and placental weight; do changes in culture media used for IVF matter? Comparisons with spontaneous pregnancies in the corresponding time periods. Hum Reprod 28:3207–3214

    Article  PubMed  Google Scholar 

  16. Zheng HY, Shi XY, Wu FR et al (2011) Assisted reproductive technologies do not increase risk of abnormal methylation of PEG1/MEST in human early pregnancy loss. Fertil Steril 96:84–89.e2

    Article  CAS  PubMed  Google Scholar 

  17. Rancourt RC, Harris HR, Michels KB (2012) Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod 27:2208–2216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zheng HY, Tang Y, Niu J et al (2013) Aberrant DNA methylation of imprinted loci in human spontaneous abortions after assisted reproduction techniques and natural conception. Hum Reprod 28:265–273

    Article  CAS  PubMed  Google Scholar 

  19. Katari S, Turan N, Bibikova M et al (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 18:3769–3778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Linke M, May A, Reifenberg K et al (2013) The impact of ovarian stimulation on the expression of candidate reprogramming genes in mouse preimplantation embryos. Cytogenet Genome Res 139:71–79

    Article  CAS  PubMed  Google Scholar 

  21. Imamura T, Kerjean A, Heams T et al (2005) Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J Biol Chem 280:20171–20175

    Google Scholar 

  22. Heinzmann J, Hansmann T, Herrmann D et al (2011) Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev 78:188–201

    Article  CAS  PubMed  Google Scholar 

  23. Barboni B, Russo V, Cecconi S et al (2011) In vitro grown sheep preantral follicles yield oocytes with normal nuclear-epigenetic maturation. PLoS One 6:e27550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wrenzycki C, Herrmann D, Niemann H (2007) Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68(Suppl 1):S77–S83

    Article  CAS  PubMed  Google Scholar 

  25. Cox L, Saunders G, Stevens J et al (2013) 6 gene expression analysis of in vivo- and in vitro-matured porcine metaphase II oocytes. Reprod Fertil Dev 26:117

    Article  Google Scholar 

  26. Sandt JJ van de, Schroeder AC, Eppig JJ (1990) Culture media for mouse oocyte maturation affect subsequent embryonic development. Mol Reprod Dev 25:164–171

    Article  PubMed  Google Scholar 

  27. Hashimoto S (2009) Application of in vitro maturation to assisted reproductive technology. J Reprod Dev 55:1–10

    Google Scholar 

  28. McEwen KR, Leitch HG, Amouroux R et al (2013) The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem Soc Trans 41:711–719

    Article  CAS  PubMed  Google Scholar 

  29. Reis e Silva AR, Bruno C, Fleurot R et al (2012) Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 7:440–446

    Article  Google Scholar 

  30. Huang JC, Lei ZL, Shi LH et al (2007) Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem Biophys Res Commun 354:77–83

    Article  CAS  PubMed  Google Scholar 

  31. Market Velker BA, Denomme MM, Mann MR (2012) Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod 86:143, 141–116

    Article  Google Scholar 

  32. Calle A, Miranda A, Fernandez-Gonzalez R et al (2012) Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol Reprod 87:34

    Article  PubMed  Google Scholar 

  33. Young LE, Fernandes K, McEvoy TG et al (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154

    Article  CAS  PubMed  Google Scholar 

  34. Hori N, Nagai M, Hirayama M et al (2010) Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 122:303–312

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die im Labor von U. Zechner durchgeführten Arbeiten werden von der Deutschen Forschungsgemeinschaft unterstützt [SPP 1356 (ZE 442/4-2) und FOR 1041 (ZE 442/5-2)].

Einhaltung ethischer Richtlinien

Interessenkonflikt. U. Zechner und H. Lehnen geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Zechner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zechner, U., Lehnen, H. Epigenetische Aspekte der Reproduktionsmedizin. Gynäkologische Endokrinologie 12, 79–86 (2014). https://doi.org/10.1007/s10304-013-0592-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-013-0592-0

Schlüsselwörter

Keywords

Navigation