Skip to main content
Log in

Étude physicochimique et biologique des polysaccharides hydrosolubles de Plantago notata Lagasca (Plantaginaceae)

Chemical composition and bioactivity of water-soluble polysaccharides from leaves of Plantago notata Lagasca (Plantaginaceae)

  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

L’extrait de polysaccharides hydrosolubles des feuilles de Plantago notata Lagasca (Plantaginaceae), une plante spontanée à caractère médicinal récoltée dans la région de Ghardaïa (Sahara septentrional Est algérien), est obtenu par extraction à l’eau distillée, à la température ambiante pendant 24 heures, après élimination de l’extrait d’éthanol. Le rendement massique de cet extrait est de 2%. L’étude de la composition de l’extrait brut des polysaccharides hydrosolubles après lyophilisation, révèle 8,33 ± 1,05% de cendres totales, 12,49 ± 1,61% de protéines totales et 77,03 ± 3,13% d’oses totaux. Parmi les oses, se retrouvent 61,35 ± 2,13% d’oses neutres et 15,66 ± 1,06% sont des oses acides. Les conditions optimales d’hydrolyse des polysaccharides hydrosolubles utilisent l’acide trifluoroacétique 4 M pendant 5 heures à 80°C. L’analyse par chromatographie échangeuse d’anions de haute performance à détecteur ampérométrique pulsé (HPAEC-PAD), des oses constitutifs des polysaccharides hydrosolubles donne 43,95% de galactose, 20,28% de rhamnose, 11,30% de glucose, 9,55% d’arabinose et 12,57% d’acide galacturonique. L’hydrolysat partiel des polysaccharides hydrosolubles stimule de manière significative la croissance de la souche Lactobacillus casei, avec une activité inférieure à celle du mélange de RP95, prébiotique de référence. L’hydrolysat est sans effet sur la souche Escherichia coli. L’action prébiotique d’hydrolysat partiel des polysaccharides hydrosolubles sur Lactobacillus casei, est appréciable.

Abstract

Plantago notata Lagasca (Plantaginaceae), a spontaneous plant used as a traditional medicine in Ghardaïa (Septentrional Sahara Algerian). This paper reports the extraction and partial characterization of water-soluble polysaccharides from P. notata leaves. These polysaccharides were obtained by elimination of the ethanol extract and sequential extraction in distilled water, followed by precipitation in 75 % ethanol. The yield of extract is 2,0% (w/w). The crude water soluble polysaccharide extracts were further characterized and revealed the average values 08,33 ±1,05% ashes, 12,49±1,61% proteins and 77,03±3,13% carbohydrates, among them 15,66±1,06% are uronic acid and 61,35±2,13% are neutral monosaccharides. A single hydrolytic step with 4M TFA at 80°C for 4 h is suggested to be more effective in releasing monomers from polysaccharides than other hydrolysis procedures. The identification of monosaccharide composition by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method shows 43,95% of galactose, 20,28% of rhamnose, 11,30% of glucose 9,55% of arabinose, and 12,57% of galacturonic acid. Partial hydrolyzate of water-soluble polysaccharides was found to have a growth stimulatory effect on Lactobacillus casei less than that of fructo-oligosaccharide (RP95). However, the hydrolyzate has no effect on the Escherichia coli strain. The present study shows that partial hydrolyzate of watersoluble polysaccharides stimulates the growth of L. casei bacteria, and that partial hydrolyzate of water-soluble polysaccharides has potential use as a prebiotic health-food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Liu G, Casqueiro J, Gutierrez S, et al (2001) Elicitation of penicillin biosynthesis by alginate in Penicillium chrysogenum, exerted on pcbAB, pcbC, and penDE genes at the transcriptional level. J Microbiol Biotechnol 11(5): 812–8

    CAS  Google Scholar 

  2. Zhang W, Wang J, Jin W, et al (2013) The antioxidant activities and neuroprotective effect of polysaccharides from the starfish Asteria srollestoni. Carbohydrate Polymers 95: 9–15

    Article  CAS  PubMed  Google Scholar 

  3. Talarico LB, Pujol CA, Zibetti RGM, et al (2005) The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antivir Res 66:103–10

    Article  CAS  PubMed  Google Scholar 

  4. Athukorala Y, Jung WK, Vasanthan T, et al (2006) An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydrate Polymers 66:184–91

    Article  CAS  Google Scholar 

  5. Xu H, Zhang Y, Zhang J, et al (2007) Isolation and characterization of an anti-complementary polysaccharide D3-S1 from the roots of Bupleurum smithii. Internat Immunopharmacol 7: 175–82

    Article  CAS  Google Scholar 

  6. Wu Y, Cui SW, Tang J, et al (2007) Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited Sterculia seeds. Carbohydrate Polymers 70: 437–43

    Article  CAS  Google Scholar 

  7. Tongh, Liang Z, Wang G (2008) Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalisal kekengi L. Carbohydrate Polymers 71: 316–23

    Article  Google Scholar 

  8. Voisin A (1987) Utilisation des plantes médicinales dans le Souf au 19e siècle. Le Sahara, 1er trimestre, 100:25–8

    Google Scholar 

  9. Diallo D, Sanogo R, Yasambou H, et al (2004) Étude des constituants des feuilles de Ziziphus mauritiana Lam. (Rhamnaceae), utilisées traditionnellement dans le traitement du diabète au Mali. Chimie 7: 1073–80

    Article  CAS  Google Scholar 

  10. Renaud M, Belgacem MN, Rinaudo M (2005) Rheological behaviour of polysaccharide aqueous solutions. Polymer 46: 12348–58

    Article  CAS  Google Scholar 

  11. Ebringerova A, Kardosova A, Hromadkova Z, et al (2003) Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants. Fitoterapia 74: 52–1

    Article  CAS  PubMed  Google Scholar 

  12. Audigie C, Figarella J, Zonszain F (1984) Manipulations d’analyse biochimique. Ed. Doin, Paris, pp 3–4

    Google Scholar 

  13. Autran JC (1991) Techniques d’analyse et de contrôle dans les industries agroalimentaires. Ed. Tec et Doc Paris, pp 115–37

    Google Scholar 

  14. Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulfuric acids micromethod. Analyt Biochem 175: 525–30

    Article  CAS  PubMed  Google Scholar 

  15. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Analyt Biochem 54: 484–9

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Fang Y (2004) Analysis of sugars in traditional Chinese drugs. J Chromat 812: 309–24

    CAS  Google Scholar 

  17. Paulsen BS, Olafsdottir ES, Ingolfsdottir K (2002) Chromatography and electrophoresis in separation and characterization of polysaccharides from lichens. J Chromat 967: 163–71

    Article  CAS  Google Scholar 

  18. Kamerling L, Boons GL, Lee YC, et al (2007) Comprehensive glycoscience. Ed. Elsevier, Paris, vol. 2, pp 654–81

    Google Scholar 

  19. Crittenden RG, Playne MJ (1996) Production, properties and applications of food grade oligosaccharides. Trends Food Sci Technol 71: 353–61

    Article  Google Scholar 

  20. Yang CH, Guan J, Zhang JS, et al (2010) Use of HPTLC to Differentiate Among the Crude Polysaccharides in Six Traditional Chinese Medicines. J Planar Chromat 23(1): 46–9

    Article  CAS  Google Scholar 

  21. Marchal N, Bourdon JL, Richard C (1987) Les milieux de culture. Ed. Doin, Paris, p 36

    Google Scholar 

  22. Rendon-Huerta JA, Juarez-Flores BI, Pinos-Rodriguez JM, et al (2011) Effects of different kind of fructans on in vitro growth of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacter iumlactis. Afr J Microbiol Res 5(18): 2706–10

    CAS  Google Scholar 

  23. Hernandez-Hernandez O, Muthaiyan A, Moreno FJ, et al (2012) Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol 30: 355–61

    Article  CAS  PubMed  Google Scholar 

  24. Samuelsen AB, Paulsen BS, Wold JK, et al (1998) Characterization of a biologically active arabinogalactan from the leaves of Plantago major L. Carbohydrate Polymers 35: 145–53

    Article  CAS  Google Scholar 

  25. Samuelsen AB, Cohen EH, Paulsen BS, et al (1999) Structural studies of a heteroxylan from Plantago major L. seeds by partial hydrolysis, HPAEC-PAD, methylation and GC–MS, ESMS and ESMS: MS. Carbohydrate Res 315:312–8

    Article  CAS  Google Scholar 

  26. Craeyveld VV, Delcour JA, Courtin CM (2009) Extractability and chemical and enzymic degradation of psyllium (Plantago ovata Forsk) seed husk arabinoxylans. Food Chemistr 112: 812–9

    Article  Google Scholar 

  27. Guo Q, Cui SW, Wang Q, et al (2007) Fractionation and Physicochemical Characterization of Psyllium Gum. Carbohydrate Polymers 3614:11–37

    Google Scholar 

  28. Mattila-Sandholm T, Myll Arinen P, Crittenden R, et al (2002) Technological challenges for future probiotic foods. Internat Dairy J 12: 173–82

    Article  CAS  Google Scholar 

  29. Saarela M, Lahteenmaki L, Crittenden R, et al (2002) Gut bacteria and health foods-The European perspective. Internat J Food Microbiol 78: 99–117

    Article  CAS  Google Scholar 

  30. Saad N, Delattre C, Urdaci M, et al (2013) An overview of the last advances in probiotic and prebiotic field. Food Sci Technol 50: 1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Boual.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boual, Z., Chouana, T., Kemassi, A. et al. Étude physicochimique et biologique des polysaccharides hydrosolubles de Plantago notata Lagasca (Plantaginaceae). Phytothérapie 13, 396–402 (2015). https://doi.org/10.1007/s10298-015-0985-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-0985-4

Mots clés

Keywords

Navigation