Skip to main content
Log in

Effet antibactérien et anti-biofilm de trois espèces de Mentha : Mentha spicata, Mentha pulegium et Mentha piperita

Antibacterial and anti-biofilm Effects of three species of Mentha: Mentha spicata, Mentha pulegium and Mentha piperita

  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

Dans la première partie de la présente étude, on a procédé à l’évaluation de l’effet antibactérien des extraits organiques bruts de trois espèces de Mentha vis-à-vis de six souches bactériennes pathogènes incluant trois bactéries Gram (-) et trois bactéries Gram (+). L’activité antibactérienne a été évaluée par la méthode de diffusion en milieu solide et celle de micro-dilution en milieu liquide. Les extraits hexaniques et dichlorométhaniques (extraits non-polaires) sont beaucoup plus actifs contre les bactéries testées que les extraits méthanoliques et aqueux (extraits polaires). Les bactéries Gram (+) se sont montrées plus sensibles que les bactéries Gram (-). La bactérie S. aureus est la plus sensible de toutes les bactéries testées dans cette étude, elle était sensible vis-à-vis tous les extraits même ceux aqueux. Ces derniers se sont montrés inactifs à la plus grande concentration utilisée (12 mg/ml) vis-à-vis des cinq autres souches.

Dans la seconde partie, les extraits apolaires ont été testés pour leur effet anti-biofilm vis-à-vis des biofilms de 48 heures formés par S. aureus et E. coli. Tous les extraits ont montré une efficacité anti-biofilm spectaculaire dans l’élimination de la totalité des biofilms formés après 30 min de traitement.

Abstract

In the first part of this study, we were proceeded to the evaluation of the antibacterial effect of the organic extracts from the leaves of three plant species of Mentha against six pathogenic bacterial strains including Gram (-) bacteria and Gram (+) bacteria. The methods of diffusion in solid and micro-dilution method in liquid medium were used for antibacterial testing. The results showed that nonpolar extracts are much more active then polar extracts. The Gram (+) bacteria showed more sensitive than the Gram (-) bacteria. S. aureus was shown to be the most sensitive of all bacteria testing in this study, it was sensitive against all extracts include that aqueous. All aqueous extracts have no antibacterial activity with the highest concentration used (12 mg/ml) against the five other strains.

In the second part, non-polar extracts were tested for their anti-biofilm effect against biofilms formed by S. aureus and E. coli in 48 hours. All extracts showed a spectacular antibiofilm effect with elimination of all the biofilms formed after 30 min of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alekshun MN, Levy SB (2007) Molecular mechanism of antibacterial multidrug resistance. Cell 128: 1037–50

    Article  CAS  PubMed  Google Scholar 

  2. UNEP-WCMC Biodiversity data sourcebook (2002) United nation environment program-World conservation monitoring center, Cambridge, England

  3. Duke JA (1993) Medicinal plants and the pharmaceutical industry. In New Crops. Edited by J Janick, JE Simon John Wiley and Sons, Inc., New York, NY, pp, 664–9

    Google Scholar 

  4. Costerton JW, Lewandowski Z, Caldwell DE, et al (1995). Microbial biofilms. Ann Rev Microbiol 49: 711–42

    Article  CAS  Google Scholar 

  5. Cherrat L, Espina L (2014) Chemical composition, antioxidant and antimicrobial properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele essential oils and an evaluation of their bactericidal effect in combined processes. Innova Food Sci Emerg Technol 22: 221–9

    Article  CAS  Google Scholar 

  6. Iscan G, Kirimer N (2002) Antimicrobial Screening of Mentha piperita Essential Oils. J Agric Food Chem 50: 3943–6

    Article  CAS  PubMed  Google Scholar 

  7. Moreno L, Bello R (2002) Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res 16: 10–3

    Article  Google Scholar 

  8. Nikiema W (2005) Propriétés pharmaco-chimiques de Calotropis Procera Ait. (Asclepiadaceae) récolté au Mali: étude préclinique des effets anti-inflammatoires et antimicrobiens des extraits des écorces de racines. Thèse de Doctorat en pharmacie, université de Bamako, 162 p

    Google Scholar 

  9. Manian R, Anusuya N, Siddhuraju P, et al (2008) The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chemistry 107: 1000–7

    CAS  Google Scholar 

  10. Ismaili H, Milella L (2004) In vivo topical anti-inflammatory and in vitro antioxidant activieties of two extracts of Thymus satureioides leaves. J Ethno-Pharmacol 91: 31–6

    CAS  Google Scholar 

  11. Mann C, Markham J (1998) A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84: 538–44

    Article  CAS  PubMed  Google Scholar 

  12. Bagge D, Hjelm M (2001) Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Appl Environm Microbiol 67: 2319–25

    Article  CAS  Google Scholar 

  13. Gram L, Bagge-Ravn D (2007) Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 18: 1165–71

    Article  CAS  Google Scholar 

  14. Rossoni E, Gaylarde C (2000) Comparison of sodium hypochlorite and peracetic acid as sanitizing agents for stainless steel food processing surfaces using epifluorescence microscopy. Internat J Food Microbiol 61: 81–5

    Article  CAS  Google Scholar 

  15. Valeriano C, Oliveira T (2012) The sanitizing action of essential oil-based solutions against Salmonella enteric serotype Enteritidis S64 biofilm formation on AISI 304 stainless steel 25: 673–7

    CAS  Google Scholar 

  16. Lee SB, Cha KH (2007) The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. J. Microbiol 45: 53–7

    CAS  PubMed  Google Scholar 

  17. Ozsoy N, Can A, Yanardag R, et al (2008) Antioxidant activity of Smilax excels L. leaft extracts. Food Chemistr 110: 571–83

    Article  CAS  Google Scholar 

  18. Areias FM, Valentão P (2001) Phenolic fingerprint of peppermint leaves. Food Chemistr 73: 307–11

    Article  CAS  Google Scholar 

  19. Dorman HJD, Kosar M (2003) Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agricult Food Chemistr 51: 4563–9

    Article  CAS  Google Scholar 

  20. Triantaphyllou K, Blekas G, Boskou D (2001) Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Internat J Food Sci Nutr 52: 313–7

    Article  CAS  Google Scholar 

  21. Tadesse M, Gulliksen B (2008) Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. J Invertebr Pathol 99: 286–93

    Article  CAS  PubMed  Google Scholar 

  22. Hambaba L, Boudjellal K (2012) Etude in vitro des activités antimicrobienne et antioxy-dante des extraits du fruit d’Elaeagnus angustifolia L. Phytothérapie 10: 350–6

    Article  Google Scholar 

  23. El-Amraoui B, Biard JF (2010) Antifungal and antibacterial activity of Porifera extracts from the Moroccan Atlantic coasts. J Mycol Med 20: 70–4

    Article  Google Scholar 

  24. Cosentino S, Tuberoso C.IG (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29: 130–5

    Article  CAS  PubMed  Google Scholar 

  25. Karaman I, Sahin F (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85: 231–5

    Article  CAS  PubMed  Google Scholar 

  26. Mahboubi M, Haghi G, (2008) Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol 119: 325–7

    Article  CAS  PubMed  Google Scholar 

  27. McCaffrey E, Endean R (1985) Antimicro-bial activity of tropical and sub-tropical sponges. Mar Biol 89: 1–8

    Article  Google Scholar 

  28. Nedorostova L, Kloucek P (2009) Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control 20: 157–60

    Article  CAS  Google Scholar 

  29. Nevas M, Korhonen AR (2004) Antibacterial efficiency of finnish spice essential oils against pathogenic and spoilage bacteria J Food Prot 67: 199–202

    CAS  PubMed  Google Scholar 

  30. Sahin F, Karaman I (2002) Evaluation of antimicrobial activities Satureja hortensis L. J Ethnopharmacol 87: 61–5

    Article  Google Scholar 

  31. Ali-Shtayeh M, Yaghmour R (1998) Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol 60: 265–71

    Article  CAS  PubMed  Google Scholar 

  32. Basli A, Chibane M (2012) Activité antibactérienne des polyphénols extraits d’une plante médicinale de la flore d’Algérie: Origanum glandulosum Desf. Phytothérapie 10: 2–9

    Article  Google Scholar 

  33. Hogan D, Kolter R (2002) Why are bacteria referactory to antimicrobials. Curr Op Microbiol 5: 272–4

    Article  Google Scholar 

  34. Qualleh H, Idid S (2010) Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae) J Mycol Med 20: 315–20

    Article  Google Scholar 

  35. Touré A, Bahi C (2011) Phytochimical screening and in vitro antifungicalactivities of extracts of lraves of Morinda morindoides (Morinda, Rubiaceae) J Med Plants Res 5(31):6780–6

    Google Scholar 

  36. Biyiti LF, Meko’o DJL, Tamzc V, et al (2004) Recherche de l’activité antibactérienne de quatre plantes médicinales camerounaises. Pharm. Med Trad Afr 13: 11–20

    Google Scholar 

  37. Cowan MM (1999) Plants products as antimicrobial activity. Clin Microbiol Rev 4 (12):564–82

    Google Scholar 

  38. Kolodzie JH., Kayser O (1999) Evaluation of the antimicrobial potency of tannins and related compounds using the rnicrodilution broth method. Planta Med 65: 444–446

    Article  Google Scholar 

  39. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30: 3875–83

    Article  CAS  Google Scholar 

  40. Daferera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. Michiganensis. Crop Protection 22: 39–44

    Article  CAS  Google Scholar 

  41. Economou KD, Oreopolou O, Thomopoulos CD (1991) Antioxidant activity of some plant extracts of the family Labiatae. Journal of the American Oil Chemists’ Society 68: 109–13

    Article  Google Scholar 

  42. Kaur C, Kapoor HC (2002) Anti-oxidant activity and total phenolic content of some Asian vegetables. Internat J Food Sci Technol 37(2):153–61

    Article  CAS  Google Scholar 

  43. Aghel N, Yamini Y (2004). Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil. Talanta 62: 407–11

    Article  CAS  PubMed  Google Scholar 

  44. Ait-Ouazzou A, Lorán S (2012a) Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea and Cyperus longus essential oils from Morocco. Food Res Internat 45: 313–9

    Article  CAS  Google Scholar 

  45. Hajlaoui H, Trabelsi N (2009) Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. W J Microbiol Biotechnol 25: 2227–38

    Article  Google Scholar 

  46. Kamkar A, Javan AJ, Asadi F et al (2010) The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem Toxicol 48: 1796–1800

    Article  CAS  PubMed  Google Scholar 

  47. Lorenzo D, Paz D (2002) Essential oils of Mentha pulegium and Mentha rotundifolia from Uruguay. Brazilian Arch Biol Technol 45(4):519–24

    Article  CAS  Google Scholar 

  48. Duru ME, Öztürk M (2004) The constituents of essential oil and in vitro antimicrobial activity of Micromeria cilicica from Turkey. J Ethnopharmacol 94: 43–8

    Article  CAS  PubMed  Google Scholar 

  49. Lawrence BM (1997) Progress in essential oils: peppermint oil. Perfum. FlaVor 22: 57–66

    Google Scholar 

  50. Spencer JS, Dowd E, Faas W (1997) The genuineness of two Mint essential oils. Perfum. FlaVor 22: 37–45

    CAS  Google Scholar 

  51. Deans SG, Svoboda KP (1988) Antibacterial activity of French Tarragon (Artemisia dracunculus Linn.) essential oil and its constituents during ontogeny. J Hortic Sci 63: 503–8

    Article  CAS  Google Scholar 

  52. Ait-Ouazzou A, Lorán S (2011a) Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J Sci Food Agricult 91(14):2643–51

    Article  CAS  Google Scholar 

  53. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Internat J Food Microbiol 94: 223–53

    Article  CAS  Google Scholar 

  54. Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharm 70: 343–9

    Article  CAS  Google Scholar 

  55. De Oliveira MMM, Brugnera DF (2010) Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 21(4):549–53

    Google Scholar 

  56. Gursoy UK, Gursoy M (2009) Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe 15: 164–7

    CAS  PubMed  Google Scholar 

  57. Sandasi M, Leonard CM, Viljoen AM (2008) The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19: 1070–5

    Article  CAS  Google Scholar 

  58. El abed S, Ibnsouda koraichi S (2011) Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr J Microbiol Res 5(20):3229–32

    Google Scholar 

  59. Anwar H, Dasgupta M (1990) Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother 34: 2043–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Watnick P, Kolter R (2000) Minireview:Biofilm, city of microbes. J Bacteriol 182: 2675–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strevett K, Chen G (2003) Microbial surface thermodynamics and applications. Res Microbio 154: 329–35

    Article  CAS  Google Scholar 

  62. Melo L (2003) Biofilm formation and its role in fixed film processes. In: The Handbook of Water and Wastewater Microbiology. London, UK, Academic Press 337–49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laglaoui.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barchan, A., Bakkali, M., Arakrak, A. et al. Effet antibactérien et anti-biofilm de trois espèces de Mentha : Mentha spicata, Mentha pulegium et Mentha piperita . Phytothérapie 14, 88–96 (2016). https://doi.org/10.1007/s10298-015-0970-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-0970-y

Mots clés

Keywords

Navigation