Skip to main content
Log in

Algorithmical analysis of information-theoretic aspects of secure communication over optical-fiber quantum channels

  • Published:
Journal of Optical and Fiber Communications Research

Abstract

The information-theoretic security of optical-fiber based quantum communication is the fundamental question of quantum cryptography. Quantum cryptographic schemes use photons as information carriers. The physical properties of photons make it possible to use quantum bits to realize unconditionally secure quantum communication over the current standard optical fiber network. Quantum cryptography is one of the most important and advanced fields in the area of quantum information processing. This paper analyzes the information-theoretic security of the most important and prevalent optical-fiber based QKD schemes, such as BB84, Six-state and DPS QKD schemes, using efficient information geometric approaches. We study the information-theoretic impacts of the most general eavesdropping attacks against these protocols using efficient algorithms. Currently, the ability to perform these attacks is well beyond today’s technological capabilities; however, in the future, these types of attacks can be used to eavesdrop on quantum communications over optical fibers. The information-theoretic security of these protocols is analyzed by information geometric algorithms and abstract geometrical objects. To describe the security of the protocols, we introduce the quantum informational ball representation, and we discover the connection between the length of the optical fiber and the radius of the quantum informational ball. For practical reasons, we will also demonstrate our algorithm for the DPS QKD protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acín, A., Gisin, N., Masanes, L., Scarani, V.: Int. J. Quantum Inf. 2, 23 (2004)

    Article  MATH  Google Scholar 

  2. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, New York (1997)

    Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier, Amsterdam (2000); Chap. V

    Chapter  Google Scholar 

  4. Badoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 801–802 (2003)

    Google Scholar 

  5. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Mathematics and Visualization, pp. 67–116. Springer, Berlin (2007)

    Google Scholar 

  6. Branciard, C., Gisin, N., Kraus, B., Scarani, V.: Phys. Rev. A 72, 032301 (2005)

    Article  ADS  Google Scholar 

  7. Branciard, C., Gisin, N., Scarani, V.: New J. Phys. 10, 013031 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Cerf, N.J., Lévy, M., Van Assche, G.: Phys. Rev. A 63, 052311 (2001)

    Article  ADS  Google Scholar 

  9. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  10. Csiszár, I., Körner, J.: IEEE Trans. Inf. Theory 24, 339 (1978)

    Article  MATH  Google Scholar 

  11. Curty, M., Lütkenhaus, N.: Phys. Rev. A 69, 042321 (2004)

    Article  ADS  Google Scholar 

  12. Curty, M., Tamaki, K., Moroder, T.: Phys. Rev. A 77, 052321 (2008)

    Article  ADS  Google Scholar 

  13. D’Ariano, G.M., Macchiavello, C.: Phys. Rev. A 67, 042306 (2003)

    Article  ADS  Google Scholar 

  14. Devetak, I., Winter, A.: Proc. R. Soc. Lond., Ser. A 461, 207 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  16. Dušek, M., Lütkenhaus, N., Hendrych, M.: In: Wolf, E. (ed.) Progress in Optics, vol. 49, p. 381. Elsevier, New York (2006)

    Google Scholar 

  17. Dynes, J.F., Yuan, Z.L., Sharpe, A.W., Shields, A.J.: Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security. Opt. Express 15, 8465 (2007)

    Article  ADS  Google Scholar 

  18. Fasel, S., Gisin, N., Ribordy, G., Zbinden, H.: Eur. Phys. J. D 30, 143 (2004)

    Article  ADS  Google Scholar 

  19. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Phys. Rev. A 56, 1163 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  20. Galtarossa, A., Menyuk, C.R.: Polarization Mode Dispersion. Springer, Berlin (2005)

    Book  Google Scholar 

  21. Gomez-Sousa, H., Curty, M.: Quantum Inf. Comput. 9, 62 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Gyongyosi, L., Imre, S.: Geometrical estimation of information theoretical impacts of incoherent attacks for quantum cryptography. Inf. Rev. Phys., pp. 349–362 (2010). Paper 6

  23. Gyongyosi, L., Imre, S.: Computational geometric analysis of physically allowed quantum cloning transformations for quantum cryptography. In: Proceedings of the 4th WSEAS International Conference on Computer Engineering and Applications (EA ’10), Harvard University, Cambridge, USA, 2000, pp. 121–126 (2010)

    Google Scholar 

  24. Gyongyosi, L., Imre, S.: Novel geometrical solution to additivity problem of classical quantum channel capacity. In: The 33rd IEEE Sarnoff Symposium—2010, IEEE Princeton/Central Jersey Section, Princeton University, Apr. 2010, Princeton, New Jersey, USA

  25. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  26. Honjo, T., Inoue, K., Takahashi, H.: Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt. Lett. 29, 2797 (2004)

    Article  ADS  Google Scholar 

  27. Hübel, H., Vanner, M.R., Lederer, T., Blauensteiner, B., Lorünser, T., Poppe, A., Zeilinger, A.: Opt. Express 15, 7853 (2007)

    Article  ADS  Google Scholar 

  28. Imre, S., Balázs, F.: Quantum Computing and Communications—An Engineering Approach. Wiley, Chichester (2005)

    Google Scholar 

  29. Inoue, K., Waks, E., Yamamoto, Y.: Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)

    Article  ADS  Google Scholar 

  30. Kato, K., Oto, M., Imai, H., Imai, K.: Voronoi diagrams for pure 1-qubit quantum states. quant-ph/0604101 (2006)

  31. Kwiat, P., Enzer, D.G., Hadley, P.G., Peterson, C.G.: Experimental Six-state quantum cryptography. In: International Conference on Quantum Information. OSA Technical Digest Series. Optical Society of America, Washington (2001). Paper FQIPB4

    Google Scholar 

  32. Niederberger, A., Scarani, V., Gisin, N.: Phys. Rev. A 71, 042316 (2005)

    Article  ADS  Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Panigrahy, R.: Minimum enclosing polytope in high dimensions. CoRR. cs.CG/0407020 (2004)

  35. Rajan, V.T.: Optimality of the Delaunay triangulation. Discrete Comput. Geom. 12, 189–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Renner, R., Gisin, N., Kraus, B.: Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  37. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  38. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  39. Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., Gray, S., Towery, C.R., Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibers. New J. Phys. 11, 075003 (2009)

    Article  ADS  Google Scholar 

  40. Takesue, H., Diamanti, E., Honjo, T., Langrock, C., Fejer, M.M., Inoue, K., Yamamoto, Y.: New J. Phys. 7, 232 (2005)

    Article  ADS  Google Scholar 

  41. Townsend, P.: Quantum cryptography on multiuser optical fiber networks. Nature 385, 47 (1997)

    Article  ADS  Google Scholar 

  42. Van Assche, G., Cardinal, J., Cerf, N.J.: IEEE Trans. Inf. Theory 50, 394 (2004)

    Article  Google Scholar 

  43. Villoresi, P., Tamburini, F., Aspelmeyer, M., Jennewein, T., Ursin, R., Pernechele, C., Bianco, G., Zeilinger, A., Barbieri, C.: Space-to-ground quantum-communication using an optical ground station: a feasibility study. arXiv:quant-ph/0408067v1 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Gyongyosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyongyosi, L., Imre, S. Algorithmical analysis of information-theoretic aspects of secure communication over optical-fiber quantum channels. J Opt Fiber Commun Res 7, 10–42 (2010). https://doi.org/10.1007/s10297-010-9006-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-010-9006-4

Keywords

Navigation