Skip to main content
Log in

Fiber Bragg gratings for dispersion compensation in optical communication systems

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

This paper presents an overview of fiber Bragg gratings (FBGs) fabrication principles and applications with emphasis on the chirped FBG used for dispersion compensation in high-speed optical communication systems. We discuss the range of FBG parameters enabled by current fabrication methods, as well as the relation between the accuracy of FBG parameters and the performance of FBG-based dispersion compensators. We describe the theory of the group delay ripple (GDR) generated by apodized chirped fiber gratings using the analogy between noisy gratings and superstructure Bragg gratings. This analysis predicts the fundamental cutoff of the high frequency spatial noise of grating parameters in excellent agreement with the experimental data. We review the iterative GDR correction technique, which further improves the FBG quality and potentially enables consistent fabrication of FBG-based dispersion compensators and tunable dispersion compensators with unprecedented performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • L. Gruner-Nielsen and B. Edvold, "Status and future promises for dispersion compensating fibers," ECOC, paper 6.1.1 (2002).

  • F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett., 12, 847-849 (1987).

    Google Scholar 

  • R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

  • B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems", J. Lightwave Technol., 18, 1418-1432 (2000).

    Article  Google Scholar 

  • S.A. Hamilton, B.S. Robinson, T.E. Murphy, S.J. Savage, and E.P. Ippen, "100 Gb/s Optical Time-Division Multiplexed Networks", J. Lightwave Technol., 20, 2086-2100 (2000).

    Article  Google Scholar 

  • K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett., 62, 1035-1037 (1993).

    Article  Google Scholar 

  • T. Kreis, Holographic interferometry: principles and methods (John Wiley & Sons, Inc., 1996).

  • L.F. Mollenauer and W.J. Tomlinson, "Piecewise interferometric generation of precision gratings," Appl. Optics, 3, 555-557 (1977).

    Google Scholar 

  • B. Eggleton, P.A. Krug, L. Poladian, and F. Ouellette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett., 30, 1620-1622 (1994).

    Article  Google Scholar 

  • M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Quellette, "Broadly tunable DBR fibre laser using sampled fibre Bragg gratings," Electron. Lett., 31, 37-38 (1995).

    Article  Google Scholar 

  • W.H. Loh, F.Q. Zhou, and J.J. Pan , "Sampled fiber grating based-dispersion slope compensator," IEEE Photon.Technol. Lett., 11, 1280-1282 (1999).

    Article  Google Scholar 

  • H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett., 4, 393-395 (1993).

    Article  Google Scholar 

  • A.V. Buryak and D.Y. Stepanov, "Novel multi-channel grating devices," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Washington, DC: OSA, 2001), vol. 61, paper BThB3.

  • J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann Fiber Bragg Gratings and Phase-Only Sampling for High Channel Counts," IEEE Photon. Technol. Lett., 14, 1309-1311 (2002).

    Article  Google Scholar 

  • M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, "Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett., 31, 1483-1485 (1995).

    Article  Google Scholar 

  • R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, "Novel technique for writing long superstructured fiber Bragg gratings," in Photosensitivity and quadratic nonlinearity in glass waveguides: Fundamentals and applications, 22 (OSA, Washington D.C., 1995).

  • R. Kashyap, H.-G. Froehlich, A. Swanton, and D.J. Armes, "1.3 m long superstep-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1809 (1996).

    Article  Google Scholar 

  • M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, "Dispersion compensating fibre Bragg gratings", in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, 4532, pp. 540-551, 2001.

  • K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett., 10, 1476-1478 (1998).

    Article  Google Scholar 

  • C. Scheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, "Influence of filter group delay ripples on system performance," in Proc. ECOC 1999, pp. 1410-1411.

  • M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, "Dispersion compensating fibre Bragg gratings", in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, Vol. 4532, pp. 540-551, 2001.

  • F. Ouellette, "The effect of profile noise on the spectral response of fiber gratings" in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.

  • R. Feced and M.N. Zervas, "Effect of random phase and amplitude errors in optical fiber gratings", J. Lightwave Technol., 18, 90-101 (2000).

    Article  Google Scholar 

  • R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, "Impact of random phase errors on the performance of fiber grating dispersion compensators", Opcal Fiber Communication Conference (OFC), 2001, Anheim, CA, Paper WDD89, 2001.

  • M. Sumetsky, B.J. Eggleton, and C.M. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings", Opt. Express, 10, 332-340 (2002).

    Google Scholar 

  • L. Poladian, "Graphical and WKB analysis of nonuniform Bragg gratings", Phys. Rev. E, 48, 4758-4767 (1993).

    Article  Google Scholar 

  • N.G.R. Broderick and C.M. de Sterke, "Theory of grating superstructures", Phys. Rev. E, 55, 3634-3646 (1997).

    Article  Google Scholar 

  • I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, "Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission," IEEE J. Select. Topics Quant. Electron., 5, 1312-1324 (1999).

    Article  Google Scholar 

  • S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, "Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask," Appl. Opt., 39, 3670-3677 (2000).

    Google Scholar 

  • T. Komukai, T. Inui, and M. Nakazawa, "Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique," Electron. Lett., 37, 449-451 (2001).

    Article  Google Scholar 

  • A.V. Buryak and D.Yu. Stepanov, "Correction of systematic errors in the fabrication of fiber Bragg gratings," Opt. Lett., 27, 1099-1101 (2002).

    Google Scholar 

  • M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, "Group delay ripple correction in chirped fiber Bragg gratings," Opt. Lett., 28, 777-779 (2003).

    PubMed  Google Scholar 

  • J. Skaar and R. Feced, "Reconstruction of gratings from noisy reflection data," J. Opt. Soc. Am. A, 19, 2229-2237 (2002).

    Google Scholar 

  • M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Deshmukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S.Dey, "High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique," Electron. Lett., 39, 1196-1198 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumetsky, M., Eggleton, B. Fiber Bragg gratings for dispersion compensation in optical communication systems. J Optic Comm Rep 2, 256–278 (2005). https://doi.org/10.1007/s10297-004-0026-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-004-0026-9

Keywords

Navigation