Skip to main content
Log in

Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products

  • Natural Products - Mini Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184. doi:10.1007/s10295-013-1389-9

    Article  CAS  PubMed  Google Scholar 

  2. Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43:343–370. doi:10.1007/s10295-015-1682-x

    Article  CAS  PubMed  Google Scholar 

  3. Chang F-Y, Ternei MA, Calle PY, Brady SF (2015) Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. J Am Chem Soc 137:6044–6052. doi:10.1021/jacs.5b01968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang FY, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci USA 110:2478–2483. doi:10.1073/pnas.1218073110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang FY, Ternei MA, Calle PY, Brady SF (2013) Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. J Am Chem Soc 135:17906–17912. doi:10.1021/ja408683p

    Article  CAS  PubMed  Google Scholar 

  6. Cimermancic P, Medema Marnix H, Claesen J, Kurita K, Wieland Brown Laura C, Mavrommatis K, Pati A, Godfrey Paul A, Koehrsen M, Clardy J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. doi:10.1016/j.cell.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot 23:442–447

    Article  CAS  PubMed  Google Scholar 

  8. Diminic J, Starcevic A, Lisfi M, Baranasic D, Gacesa R, Hranueli D, Long PF, Cullum J, Zucko J (2014) Evolutionary concepts in natural products discovery: what actinomycetes have taught us. J Ind Microbiol Biotechnol 41:211–217. doi:10.1007/s10295-013-1337-8

    Article  CAS  PubMed  Google Scholar 

  9. Feng Z, Chakraborty D, Dewell SB, Reddy BVB, Brady SF (2012) Environmental DNA-encoded antibiotics fasamycins A and B Inhibit FabF in Type II fatty acid biosynthesis. J Am Chem Soc 134:2981–2987. doi:10.1021/ja207662w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng Z, Kallifidas D, Brady SF (2011) Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc Natl Acad Sci USA 108:12629–12634. doi:10.1073/pnas.1103921108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716. doi:10.1002/anie.200806121

    Article  CAS  PubMed  Google Scholar 

  12. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190. doi:10.1039/B507395M

    Article  CAS  PubMed  Google Scholar 

  13. Hillenmeyer ME, Vandova GA, Berlew EE, Charkoudian LK (2015) Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters. Proc Natl Acad Sci USA 112:13952–13957. doi:10.1073/pnas.1511688112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, Wohlert SE, Holzenkampfer M, Nicholson GJ, Bechthold A, Sussmuth RD et al (2007) A genomic screening approach to the structure-guided identification of drug candidates from natural sources. ChemBioChem 8:757–766. doi:10.1002/cbic.200600375

    Article  CAS  PubMed  Google Scholar 

  15. Huitu Z, Linzhuan W, Aiming L, Guizhi S, Feng H, Qiuping L, Yuzhen W, Huanzhang X, Qunjie G, Yiguang W (2009) PCR screening of 3-amino-5-hydroxybenzoic acid synthase gene leads to identification of ansamycins and AHBA-related antibiotic producers in actinomycetes. J Appl Microbiol 106:755–763. doi:10.1111/j.1365-2672.2008.04010.x

    Article  CAS  PubMed  Google Scholar 

  16. Jensen PR, Chavarria KL, Fenical W, Moore BS, Ziemert N (2014) Challenges and triumphs to genomics-based natural product discovery. J Ind Microbiol Biotechnol 41:203–209. doi:10.1007/s10295-013-1353-8

    Article  CAS  PubMed  Google Scholar 

  17. Kang H-S, Brady SF (2014) Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 136:18111–18119. doi:10.1021/ja510606j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang HS, Brady SF (2013) Arimetamycin A: improving clinically relevant families of natural products through sequence-guided screening of soil metagenomes. Angew Chem Int Ed Engl 52:11063–11067. doi:10.1002/anie.201305109

    Article  CAS  PubMed  Google Scholar 

  19. Kang HS, Brady SF (2014) Arixanthomycins A-C: phylogeny-guided discovery of biologically active eDNA-derived pentangular polyphenols. ACS Chem Biol 9:1267–1272. doi:10.1021/cb500141b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 29:243–263. doi:10.1039/c2np00019a

    Article  CAS  PubMed  Google Scholar 

  21. Kuhner MK, McGill J (2014) Correcting for sequencing error in maximum likelihood phylogeny inference. G3 Genes Gen Genet 4(12):2545–2552. doi:10.1534/g3.114.014365

    Google Scholar 

  22. Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94:1354–1356

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Li Y, Lu C, Zhang J, Zhu J, Wang H, Shen Y (2015) Activating a cryptic ansamycin biosynthetic gene cluster to produce three new naphthalenic octaketide ansamycins with n-pentyl and n-butyl side chains. Org Lett 17:3706–3709. doi:10.1021/acs.orglett.5b01686

    Article  CAS  PubMed  Google Scholar 

  24. Metsa-Ketela M, Halo L, Munukka E, Hakala J, Mantsala P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. doi:10.1124/pr.56.2.6

    Article  CAS  PubMed  Google Scholar 

  26. Nakano H, Omura S (2009) Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot 62:17–26. doi:10.1038/ja.2008.4

    Article  CAS  PubMed  Google Scholar 

  27. O’Meara BC (2012) Evolutionary inferences from phylogenies: a review of methods. Annu Rev Ecol Evol Syst 43:267–285. doi:10.1146/annurev-ecolsys-110411-160331

    Article  Google Scholar 

  28. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576. doi:10.1128/MMBR.00033-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110. doi:10.1016/j.micres.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Rebets Y, Brotz E, Tokovenko B, Luzhetskyy A (2014) Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 41:387–402. doi:10.1007/s10295-013-1352-9

    Article  CAS  PubMed  Google Scholar 

  31. Reen FJ, Romano S, Dobson AD, O’Gara F (2015) The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 13:4754–4783. doi:10.3390/md13084754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ridley CP, Lee HY, Khosla C (2008) Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci USA 105:4595–4600. doi:10.1073/pnas.0710107105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanchez C, Mendez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045. doi:10.1039/b601930g

    Article  CAS  PubMed  Google Scholar 

  34. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760. doi:10.1039/b821578b

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt I, Barker FK (2009) Phylogenetic methods in natural product research. Nat Prod Rep 26:1585–1602. doi:10.1039/b910458p

    Article  CAS  PubMed  Google Scholar 

  36. Sensi P, Margalith P, Timbal MT (1959) Rifamycin, a new antibiotic; preliminary report. Farm Sci 14:146–147

    CAS  Google Scholar 

  37. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170. doi:10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

  38. Wang HX, Chen YY, Ge L, Fang TT, Meng J, Liu Z, Fang XY, Ni S, Lin C, Wu YY et al (2013) PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes. J Appl Microbiol 115:77–85. doi:10.1111/jam.12217

    Article  CAS  PubMed  Google Scholar 

  39. Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005) Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71:2232–2238. doi:10.1128/AEM.71.5.2232-2238.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13:303–314. doi:10.1038/nrg3186

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Qian Z, Wu X, Ding Y, Li J, Lu C, Shen Y (2014) Juanlimycins A and B, ansamycin macrodilactams from Streptomyces sp. Org Lett 16:2752–2755. doi:10.1021/ol501072t

    Article  CAS  PubMed  Google Scholar 

  42. Zhu X, Liu J, Zhang W (2015) De novo biosynthesis of terminal alkyne-labeled natural products. Nat Chem Biol 11:115–120. doi:10.1038/nchembio.1718

    Article  CAS  PubMed  Google Scholar 

  43. Zhu X, Su M, Manickam K, Zhang W (2015) Bacterial genome mining of enzymatic tools for alkyne biosynthesis. ACS Chem Biol 10:2785–2793. doi:10.1021/acschembio.5b00641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes—a review. Nat Prod Rep. doi:10.1039/c6np00025h

    PubMed  Google Scholar 

  45. Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci USA 111:E1130–E1139. doi:10.1073/pnas.1324161111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was supported by Konkuk University in 2016 (2016-A019-0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hahk-Soo Kang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, HS. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. J Ind Microbiol Biotechnol 44, 285–293 (2017). https://doi.org/10.1007/s10295-016-1874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1874-z

Keywords

Navigation