Skip to main content
Log in

A new technique for promoting cyclic utilization of cyclodextrins in biotransformation

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cyclodextrins (CDs) can improve the productivity of steroid biotransformation by enhancing substrate solubility. CDs can be recycled by grafting them with appropriate carriers. Loofah fiber is an excellent grafting material for CDs, and can be applied to the biotransformation and recycling of β-cyclodextrin (β-CD). In this work, a technique for recycling β-CD in cortisone acetate (CA) biotransformation by Arthrobacter simplex CPCC 140451 was studied. Loofah fiber-grafted β-CD (LF-β-CD) was prepared using epichlorohydrin, which is a cross-linking agent. The grafting yield of β-CD was 74.8 mg g−1 dried fibers. LF-β-CD could increase the solubility of CA and enhance biotransformation. The initial conversion rate of CA was 1.5-fold higher than that of the blank group. LF-β-CD was also used in biocatalytic reactions for eight cycles, and it maintained the conversion ratio of CA at approximately 90%. Given the above positive results, LF-β-CD can be utilized in biotechnological recycling applications. This method can also be applied to CD derivatives and hydrophobic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auzely-Velty R, Rinaudo M (2002) New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35:7955–7962. doi:10.1021/ma020664o

    Article  CAS  Google Scholar 

  2. Bou-Saab H, Boulanger A, Schellenbaum P, Neunlist S (2013) Performance of Loofah fiber as immobilization matrix in bioconversion reactions by Nicotiana tabacum BY-2. J Biosci Bioeng 116:506–508. doi:10.1016/j.jbiosc.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  3. Boynard CA, Monteiro SN, d’Almeida JRM (2003) Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. J Appl Polym Sci 87:1927–1932. doi:10.1002/app.11522

    Article  CAS  Google Scholar 

  4. Chen JP, Yu SC, Hsu BRS, Fu SH, Liu HS (2003) Loofa sponge as a scaffold for the culture of human hepatocyte cell line. Biotechnol Progr 19:522–527. doi:10.1021/bp025720j

    Article  CAS  Google Scholar 

  5. Cabrales L, Abidi N, Hammond A (2012) Cotton fabric functionalization with cyclodextrins. J Mater Environ Sci 3:561–574

    CAS  Google Scholar 

  6. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447. doi:10.1007/s00253-012-4078-0

    Article  CAS  PubMed  Google Scholar 

  7. Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362. doi:10.1016/j.radphyschem.2011.07.009

    Article  CAS  Google Scholar 

  8. Denter U, Schollmeyer E (1996) Surface modification of synthetic and natural fibres by fixation of cyclodextrin derivatives, in Proceedings of the Eighth International Symposium on Cyclodextrins. Springer Netherlands pp 559–564

  9. Dong C, Qian LY, Zhao GL, He BH, Xiao HN (2014) Preparation of antimicrobial cellulose fibers by grafting β-cyclodextrin and inclusion with antibiotics. Mater Lett 124:181–183. doi:10.1016/j.matlet.2014.03.0913

    Article  CAS  Google Scholar 

  10. Dong C, Ye Y, Qian L, Zhao G, He B, Xiao H (2014) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21:1921–1932. doi:10.1007/s10570-014-0249-8

    Article  CAS  Google Scholar 

  11. Gawish SM, Ramadan AM, Abo El-Ola SM, Abou El-Kheir AA (2009) Citric acid used as a cross-linking agent for grafting β-cyclodextrin onto wool fabric. Polym Plast Technol 48:701–710. doi:10.1080/03602550902824572

    Article  CAS  Google Scholar 

  12. Hesselink PGM, van Vliet S, de Vries H, Witholt B (1989) Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb Tech 11:398–404. doi:10.1016/0141-0229(89)90133-6

    Article  CAS  Google Scholar 

  13. Hideno A, Ogbonna JC, Aoyagi H, Tanaka H (2007) Acetylation of loofa (Loofah fiber) sponge as immobilization carrier for bioprocesses involving cellulase. J Biosci Bioeng 103:311–317. doi:10.1263/jbb.103.311

    Article  CAS  PubMed  Google Scholar 

  14. Lee MH, Yoon KJ, Ko SW (2000) Grafting onto cotton fiber with acrylamidomethylated β-cyclodextrin and its application. J Appl Polym Sci 78:1986–1991. doi:10.1002/1097-4628(20001209)78:11<1986:AID-APP190>3.0.CO;2-7

    Article  CAS  Google Scholar 

  15. Lee MH, Yoon KJ, Ko SW (2001) Synthesis of a vinyl monomer containing β-cyclodextrin and grafting onto cotton fiber. J Appl Polym Sci 80:438–446. doi:10.1002/1097-4628(20010418)80:3<438:AID-APP1117>3.0.CO;2-2

    Article  CAS  Google Scholar 

  16. Manosroi A, Saowakhon S, Manosroi J (2008) Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem 108:132–136. doi:10.1016/j.jsbmb.2007.05.032

    Article  CAS  Google Scholar 

  17. Ma YH, Wang M, Fan Z, Shen YB, Zhang LT (2009) The influence of host–guest inclusion complex formation on the biotransformation of cortisone acetate Δ1-dehydrogenation. J Steroid Biochem 117:146–151. doi:10.1016/j.jsbmb.2009.08.007

    Article  CAS  Google Scholar 

  18. Ogbonna JC, Mashima H, Tanaka H (2001) Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour Technol 76:1–8. doi:10.1016/S0960-8524(00)00084-5

    Article  CAS  PubMed  Google Scholar 

  19. Roble ND, Ogbonna JC, Tanaka H (2003) A novel circulating loop bioreactor with cells immobilized in loofa (Loofah fiber) sponge for the bioconversion of raw cassava starch to ethanol. Appl Microbiol Biotechnol 60:671–678. doi:10.1007/s00253-002-1119-0

    Article  CAS  PubMed  Google Scholar 

  20. Rukmani A, Sundrarajan M (2012) Inclusion of antibacterial agent thymol on β-cyclodextrin-grafted organic cotton. J Ind Text 42:132–144. doi:10.1177/1528083711430244

    Article  Google Scholar 

  21. Shen Y, Wang M, Zhang L, Ma Y, Ma B, Zheng Y, Luo J (2011) Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Appl Microbiol Biotechnol 90:1995–2003. doi:10.1007/s00253-011-3214-6

    Article  CAS  PubMed  Google Scholar 

  22. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754. doi:10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  23. Saab HB, Fouchard S, Boulanger A, Llopiz P, Neunlist S (2013) Luffa cylindrica and phytosterols bioconversion: from shake flask to jar bioreactor. J Ind Microbiol Biot 40:1315–1320. doi:10.1007/s10295-013-1315-1

    Article  Google Scholar 

  24. Shen Y, Wang F, Wang Y, Zhao Q, Wang M (2016) Cyclic utilization of HP-β-CD in the bioconversion of cortisone acetate by Arthrobacter simplex. Biotechnol Lett 38:597–602. doi:10.1007/s10529-015-2022-y

    Article  CAS  PubMed  Google Scholar 

  25. Saab HB, Fouchard S, Boulanger A, Llopiz P, Neunlist S (2010) Performance of Luffa cylindrica as an immobilization matrix for the biotransformation of cholesterol by Mycobacterium species. Biocatal Biotransfor 28:387–394. doi:10.3109/10242422.2010.537326

    Article  CAS  Google Scholar 

  26. Saudagar PS, Shaligram NS, Singhal RS (2008) Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresour Technol 99:2250–2253. doi:10.1016/j.biortech.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  27. Tanobe VOA, Sydenstricker THD, Munaro M, Amico SC (2005) A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Test 24:474–482. doi:10.1016/j.polymertesting.2004.12.00420

    Article  CAS  Google Scholar 

  28. Voncina B, Le Marechal AM (2005) Grafting of cotton with β-cyclodextrin via poly (carboxylic acid). J Appl Polym Sci 96:1323–1328. doi:10.1002/app.21442

    Article  CAS  Google Scholar 

  29. Wang M, Zhang L, Shen Y, Ma Y, Zheng Y, Luo J (2009) Effects of hydroxypropyl-β-cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. J Mol Catal B-Enzym 59:58–63. doi:10.1016/j.molcatb.2008.12.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21276196, 21406167, and 21306138), the Key Project of Chinese Ministry of Education (Grant No. 213004A), and the Tianjin Programs for Science and Technology Development (Grant No. 15ZCZDSY00510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Yu, Z., Yang, X. et al. A new technique for promoting cyclic utilization of cyclodextrins in biotransformation. J Ind Microbiol Biotechnol 44, 1–7 (2017). https://doi.org/10.1007/s10295-016-1856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1856-1

Keywords

Navigation