Skip to main content
Log in

High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

d-Psicose 3-epimerase (DPEase) converts d-fructose into d-psicose which exists in nature in limited quantities and has key physiological functions. In this study, RDPE (DPEase from Ruminococcus sp. 5_1_39BFAA) was successfully constitutively expressed in Bacillus subtilis, which is the first report of its kind. Three sugar-inducible promoters were compared, and the xylose-inducible promoter P xylA was proved to be the most efficient for RDPE production. Based on the analysis of the inducer concentration and RDPE expression, we surmised that there was an extremely close correlation between the intracellular RDPE expression and xylose accumulation level. Subsequently, after the metabolic pathway of xylose was blocked by deletion of xylAB, the intra- and extra-cellular RDPE expression was significantly enhanced. Meanwhile, the optimal xylose induction concentration was reduced from 4.0 to 0.5 %. Eventually, the secretion level of RDPE reached 95 U/mL and 2.6 g/L in a 7.5-L fermentor with the fed-batch fermentation, which is the highest production of DPEase by a microbe to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol 94:1461–1467

    Article  CAS  PubMed  Google Scholar 

  2. Mu W, Chu F, Xing Q, Yu S, Zhou L, Jiang B (2011) Cloning, expression, and characterization of a d-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem 59:7785–7792

    Article  CAS  PubMed  Google Scholar 

  3. Oshima H, Kimura I, Izumori K (2006) Psicose contents in various food products and its origin. Food Sci Technol Res 12:137–143

    Article  CAS  Google Scholar 

  4. Matsuo T, Suzuki H, Hashiguchi M, Izumori K (2002) d-Psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol 48:77–80

    Article  CAS  PubMed  Google Scholar 

  5. Iida T, Kishimoto Y, Yoshikawa Y, Hayashi N, Okuma K, Tohi M, Yagi K, Matsuo T, Izumori K (2008) Acute d-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. J Nutr Sci Vitaminol 54:511–514

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi N, Iida T, Yamada T, Okuma K, Takehara I, Yamamoto T, Yamada K, Tokuda M (2010) Study on the postprandial blood glucose suppression effect of d-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Biosci Biotechnol Biochem 74:510–519

    Article  CAS  PubMed  Google Scholar 

  7. Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H (2001) Less body fat accumulation with d-psicose diet versus d-fructose diet. J Clin Biochem Nutr 30:55–65

    Article  CAS  Google Scholar 

  8. Sun Y, Hayakawa S, Izumori K (2004) Modification of ovalbumin with a rare ketohexose through the maillard reaction: effect on protein structure and gel properties. J Agric Food Chem 52:1293–1299

    Article  CAS  PubMed  Google Scholar 

  9. Izumori K, Khan AR, Okaya H, Tsumura T (1993) A new enzyme, d-ketohexose 3-epimerase, from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 57:1037–1039

    Article  CAS  Google Scholar 

  10. Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58:2168–2171

    Article  CAS  Google Scholar 

  11. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK (2006) Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol 72:981–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Mu W, Jiang B, Zhang T (2009) Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnol Lett 31:857–862

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Men Y, Bai W, Li X, Zhang L, Sun Y, Ma Y (2012) Overexpression of d-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in d-psicose production. Biotechnol Lett 34:1901–1906

    Article  PubMed  Google Scholar 

  14. Zhang WL, Fang D, Xing QC, Zhou L, Jiang B, Mu WM (2013) Characterization of a novel metal-dependent d-psicose 3-epimerase from Clostridium scindens 35704. PLoS One 8:e62987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Fang D, Zhang T, Zhou L, Jiang B, Mu W (2013) Characterization of a metal-dependent d-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. J Agric Food Chem 61:11468–11476

    Article  CAS  PubMed  Google Scholar 

  16. Jia M, Mu W, Chu F, Zhang X, Jiang B, Zhou LL, Zhang T (2013) A d-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for d-psicose production: cloning, expression, purification, and characterization. Appl Microbiol Biotechnol 98:717–725

    Article  PubMed  Google Scholar 

  17. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    Article  CAS  PubMed  Google Scholar 

  18. Blattner FR, Plunkett G, Bloch CA (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  19. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  20. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  CAS  PubMed  Google Scholar 

  21. Nijland R, Kuipers OP (2008) Optimization of protein secretion by Bacillus subtilis. Recent Pat Biotechnol 2:79–87

    Article  CAS  PubMed  Google Scholar 

  22. Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57:109–137

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanvood CR (1992) Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256

    Article  Google Scholar 

  24. Chen J, Gai Y, Fu G, Zhou W, Zhang D, Wen J (2015) Enhanced extracellular production of alpha-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol Lett 37:899–906

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Fu G, Gai Y, Zheng P, Zhang D, Wen J (2015) Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact 14:92

    Article  PubMed  PubMed Central  Google Scholar 

  26. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

  27. Cr H, Sm C (1990) Molecular biological methods for Bacillus. Wiley, Chichester

    Google Scholar 

  28. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. You C, Zhang XZ, Zhang YH (2012) Simple cloning via direct transformation of PCR product (DNA Multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 78:1593–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu S, Endo K, Ara K, Ozaki K, Ogasawara N (2008) Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 154:2562–2570

    Article  CAS  PubMed  Google Scholar 

  31. Guerra LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75

    Article  CAS  PubMed  Google Scholar 

  32. Radha S, Gunasekaran P (2008) Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Bioresour Technol 99:5528–5537

    Article  CAS  PubMed  Google Scholar 

  33. Ming YM, Wei ZW, Lin CY, Sheng GY (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu SL, Du K (2012) Enhanced expression of an endoglucanase in Bacillus subtilis by using the sucrose-inducible sacB promoter and improved properties of the recombinant enzyme. Protein Expr Purif 83:164–168

    Article  CAS  PubMed  Google Scholar 

  35. Chen T, Liu WX, Fu J, Zhang B, Tang YJ (2013) Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J Biotechnol 168:499–505

    Article  CAS  PubMed  Google Scholar 

  36. Zhang B, Li N, Wang Z, Tang YJ, Chen T, Zhao X (2015) Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbiol Biotechnol 99:885–896

    Article  CAS  PubMed  Google Scholar 

  37. Park YC, Jun SY, Seo JH (2012) Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently. J Biotechnol 161:402–406

    Article  CAS  PubMed  Google Scholar 

  38. Phan TT, Tran LT, Schumann W, Nguyen HD (2015) Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli. Microb Cell Fact 14:72

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinf 6:167

    Article  Google Scholar 

  40. Phan TT, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expr Purif 46:189–195

    Article  CAS  PubMed  Google Scholar 

  41. Bhavsar AP, Zhao X, Brown ED (2001) Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl Environ Microbiol 67:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vavrova L, Muchova K, Barak I (2010) Comparison of different Bacillus subtilis expression systems. Res Microbiol 161:791–797

    Article  CAS  PubMed  Google Scholar 

  43. Biedendieck R, Bunk B, Furch T, Franco-Lara E, Jahn M, Jahn D (2010) Systems biology of recombinant protein production in Bacillus megaterium. Adv Biochem Eng Biotechnol 120:133–161

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to express their thanks to financial supports from National Nature Science Foundation of China (31370089, 21506244, 31570303), State Key Development 973 Program for Basic Research of China (2013CB733601), Natural Science Foundation of Liaoning Province of China (2014026012) and Tianjin Nature Science Foundation (16JCYBJC23500, 15JCQNJC09500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanxia Sun or Dawei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All authors have agreed to submit this manuscript to the “Journal of Industrial Microbiology and Biotechnology”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhu, Y., Fu, G. et al. High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis . J Ind Microbiol Biotechnol 43, 1577–1591 (2016). https://doi.org/10.1007/s10295-016-1819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1819-6

Keywords

Navigation