Skip to main content
Log in

Endophytic Streptomyces sp. AC35, a producer of bioactive isoflavone aglycones and antimycins

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this research, a microbial endophytic strain obtained from the rhizosphere of the conifer Taxus baccata and designated as Streptomyces sp. AC35 (FJ001754.1 Streptomyces, GenBank) was investigated. High 16S rDNA gene sequence similarity suggests that this strain is closely related to S. odorifer. The major fatty acid profile of intracellular lipids was also carried out to further identify this strain. Atomic force microscopy and scanning acoustic microscopy were used to image our strain. Its major excreted substances were extracted, evaluated for antimicrobial activity, purified, and identified by ultraviolet–visible spectroscopy (UV–vis), liquid chromatography–mass spectrometry (LC–MS/MS) and nuclear magnetic resonance as the bioactive isoflavone aglycones—daidzein, glycitein and genistein. Batch cultivation, performed under different pH conditions, revealed enhanced production of antimycin components when the pH was stable at 7.0. Antimycins were detected by HPLC and identified by UV–vis and LC–MS/MS combined with the multiple reaction monitoring. Our results demonstrate that Streptomyces sp. AC35 might be used as a potential source of effective, pharmaceutically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takahashi Y, Omura S (2003) Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol 49:141–154

    Article  CAS  PubMed  Google Scholar 

  2. Narayana KJP, Vijayalakshmi M (2008) Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Res J Pharmacol 2(1):4–7

    Google Scholar 

  3. Saadoun I, AL-Joubori B, Al-Khoury R (2015) Testing of production of inhibitory bioactive compounds by soil streptomycetes as preliminary screening programs in UAE for anti-cancer and anti-bacterial drugs. Int J Curr Microbiol Appl Sci 4(3):446–459

    Google Scholar 

  4. Yilmaz EI, Yavuz M, Kizil M (2008) Molecular characterization of rhizospheric soil streptomycetes isolated from indigenous Turkish plants and their antimicrobial activity. World J Microbiol Biotechnol 24:1461–1470

    Article  CAS  Google Scholar 

  5. Lee EJ, Hwang KY, Lee H, Chung N (2011) Characterization of a new Streptomyces sp. A1022 as a potential biocontrol agent. J Korean Soc Appl Biol Chem 54(3):488–493

    Article  CAS  Google Scholar 

  6. Hu SC, Hong K, Song YC, Liu JY, Tan RX (2009) Biotransformation of soybean isoflavones by a marine Streptomyces sp. 060524 and cytotoxicity of the products. World J Microbiol Biotechnol 25:115–121

    Article  Google Scholar 

  7. Osman ME, Ahmed FH, Abd El All WSM (2011) Antibiotic production from local Streptomyces isolates from Egyptian soil at Wady ElNatron: isolation, identification and optimization. Aust J Basic Appl Sci 5(9):782–792

    CAS  Google Scholar 

  8. Berdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? In: Proceedings of the 9th international symposium on the biology of actinomycetes, part I. New York, pp 3–23

  9. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  10. Bouizgarne B, Lanoot B, Loqman S, Sproer C, Klenk HP, Swings J, Ouhdouch Y (2009) Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L. Int J Syst Evolution Microbiol 59:2857–2863

    Article  CAS  Google Scholar 

  11. Lo FH, Mak NK, Leung KN (2007) Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells. Biomed Pharmacother 61:591–595

    Article  CAS  PubMed  Google Scholar 

  12. Miura T, Yuan L, Sun B, Fujii H, Yoshida M, Wakame K, Kosuna K (2002) Isoflavone aglycon produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity. Biosci Biotechnol Biochem 66(12):2626–2631

    Article  CAS  PubMed  Google Scholar 

  13. Hintz KK, Ren J (2004) Phytoestrogenic isoflavones daidzein and genistein reduce glucose-toxicity-induced cardiac contractile dysfunction in ventricular myocytes. Endocr Res 30(2):215–223

    Article  CAS  PubMed  Google Scholar 

  14. Nishii T, Inai M, Kaku H, Horikawa M, Tsunoda T (2007) A practical total synthesis of (+)-antimycin A9. J Antibiot 60(1):65–72

    Article  CAS  PubMed  Google Scholar 

  15. Shiomi K, Hatae K, Hatano H, Matsumoto A, Takahashi Y, Jiang CL, Tomoda H, Kobayashi S, Tanaka H, Omura S (2005) A new antibiotic, antimycin A9, produced by Streptomyces sp. K01-0031. J Antibiot 58(1):74–78

    Article  CAS  PubMed  Google Scholar 

  16. Viegelmann C, Margassery LM, Kennedy J, Zhang T, O´Brien C, O´Gara F, Morrissey JP, Dobson ADW, Edrada-Ebel R (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12:3323–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu LY, Quan XS, Wang C, Sheng HF, Zhou GX, Lin BR, Jiang RW, Yao XS (2011) Antimycins A19 and A20, two new antimycins produced by marine actinomycete Streptomyces antibioticus H74-18. J Antibiot 64:661–665

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163

    Article  CAS  Google Scholar 

  19. Christopherson SW, Glass RL (1969) Preparation of milk fat methyl esters by alcoholysis in an essentially non-alcoholic solution. J Dairy Sci 52:1289–1290

    Article  CAS  Google Scholar 

  20. Maruna M, Sturdikova M, Liptay T, Godany A, Muckova M, Certik M, Pronayova N, Proksa B (2010) Isolation, structure elucidation and biological activity of angucycline antibiotics from an epiphytic yew streptomycete. J Basic Microbiol 50:1–8

    Article  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Maleki H, Mashinchian O (2011) Characterization of Streptomyces isolates with UV, FTIR spectroscopy and HPLC analyses. BioImpacts 1(1):47–52

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Sol R, Armstrong I, Wright C, Dyson P (2007) Characterization of Changes to the cell surface during the life cycle of Streptomyces coelicolor. atomic force microscopy of living cells. J Bacteriol 189:2219–2225

    Article  PubMed  Google Scholar 

  24. Hain T, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E, Rainey FA (1997) Discrimination of Streptomyces albidoflavus strains based on the size and number of 16–23 s ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47(1):202–206

    Article  CAS  PubMed  Google Scholar 

  25. Mergaert J, Wouters A, Swings J (1994) Estimation of the intrinsic biodiversity among poly(3-hydroxyalkanoates) degrading streptomycetes using gas chromatographic analysis of fatty acids. System Appl Microbiol 17:601–612

    Article  Google Scholar 

  26. Seipke RF, Hutchins MI (2013) The regulation and biosynthesis of antimycins. Beilstein J Org Chem 9:2556–2563

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panacea. Appl Enviro Microbiol 76(11):3702–3714

    Article  CAS  Google Scholar 

  28. Schilling G, Berti D, Kluepfel D (1970) Antimycin A components. II Identification and analysis of antimycin A fractions by pyrolysis-gas liquid chromatography. J Antibiot 23(2):81–91

    Article  CAS  PubMed  Google Scholar 

  29. Hosotani N, Kumagai K, Nakagawa H, Shimatani T, Saji I (2005) Antimycins A10–A16, seven new antimycin antibiotics produced by Streptomyces spp. SPA-10191 and SPA-8893. J Antibiot 58(7):460–467

    Article  CAS  PubMed  Google Scholar 

  30. Abidi SL (1989) Reversed-phase thin-layer chromatography of homologues of antimycin A and related derivatives. J Chromatogr 464:453–458

    Article  CAS  PubMed  Google Scholar 

  31. Verdrengh M, Vincent Collins L, Bergin P, Tarkowski A (2004) Phytoestrogen genistein as an antistaphylococcal agent. Microbes Infect 6:86–92

    Article  CAS  PubMed  Google Scholar 

  32. Ulanowska K, Tkaczyc A, Konopa G, Wegrzyn G (2006) Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strain. Arch Microbiol 184:271–278

    Article  CAS  PubMed  Google Scholar 

  33. Ramachandran S, Gottlieb D (1961) Mode of action of antibiotics II. Specificity of action of antimycin A and ascosin. Biochim Biophys Acta 53(2):396–402

    Article  CAS  PubMed  Google Scholar 

  34. Kutzner HJ (1986) The family Streptomycetaceae. The prokaryotes, a handbook on habitats, isolation and identification of bacteria, vol 2. Springer, New York, pp 2028–2090

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ondrejíčková.

Ethics declarations

Funding

This study was supported by VEGA Grants No. 1/0770/15 from Ministry of Education, Slovak Republic.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondrejíčková, P., Šturdíková, M., Hushegyi, A. et al. Endophytic Streptomyces sp. AC35, a producer of bioactive isoflavone aglycones and antimycins. J Ind Microbiol Biotechnol 43, 1333–1344 (2016). https://doi.org/10.1007/s10295-016-1800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1800-4

Keywords

Navigation