Skip to main content
Log in

Engineered biosynthesis of biodegradable polymers

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PLA:

Polylactic acid

LAB:

Lactic acid bacteria

SSCF:

Simultaneous saccharification and co-fermentation

MCRB:

Membrane cell-recycle bioreactors

SCL:

Short chain length

MCL:

Medium chain length

PEG:

Polyethylene glycol

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

PBS:

Polybutylene succinate

PE:

Polyethylene

PTT:

Polytrimethylene terephthalate

BDO:

Butanediol

EMP:

Embden-Meyerhof-Parnas

PK:

Pentose phosphoketolase

References

  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902. doi:10.1016/j.biotechadv.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2010) Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89:1039–1049. doi:10.1007/s00253-010-2986-4

    Article  CAS  Google Scholar 

  3. Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86:284–289

    Article  CAS  Google Scholar 

  4. Åkerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour Technol 75:119–126

    Article  Google Scholar 

  5. Amara A, Steinbüchel A, Rehm B (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 59:477–482

    Article  CAS  PubMed  Google Scholar 

  6. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, Miskovic L, Hatzimanikatis V (2016) Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng. doi:10.1016/j.ymben.2016.01.009

  8. Babel W, Ackermann J-U, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly (3HB). In: Biopolyesters. Springer, pp. 125–157

  9. Baker SE, Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8:e54144. doi:10.1371/journal.pone.0054144

    Article  CAS  Google Scholar 

  10. Balzer GJ, Thakker C, Bennett GN, San K-Y (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+ -dependent formate dehydrogenase. Metab Eng 20:1–8. doi:10.1016/j.ymben.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  11. Barton NR, Burgard AP, Burk MJ, Crater JS, Osterhout RE, Pharkya P, Steer BA, Sun J, Trawick JD, Van Dien SJ, Yang TH, Yim H (2014) An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 42:349–360. doi:10.1007/s10295-014-1541-1

    Article  PubMed  CAS  Google Scholar 

  12. Berglund KA, Dunuwila DD, Yedur S (2004) Succinic acid production and purification. US Patent US6265190 B1

  13. Bianchi MM, Brambilla L, Protani F, Liu C-L, Lievense J, Porro D (2001) Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol 67:5621–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4 % of their fresh weight. Planta 211:841–845

    Article  CAS  PubMed  Google Scholar 

  15. Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bormann E, Roth M (1999) The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 21:1059–1063

    Article  CAS  Google Scholar 

  17. Bradfield MFA, Nicol W (2014) Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: steady-state metabolic flux variation. Biochem Eng J 85:1–7. doi:10.1016/j.bej.2014.01.009

    Article  CAS  Google Scholar 

  18. Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195

    Article  CAS  PubMed  Google Scholar 

  19. Cavalheiro JM, de Almeida MCM, Grandfils C, da Fonseca M (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  20. Chan S, Kanchanatawee S, Jantama K (2012) Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresour Technol 103:329–336. doi:10.1016/j.biortech.2011.09.096

    Article  CAS  PubMed  Google Scholar 

  21. Chang D-E, Jung H-C, Rhee J-S, Pan J-G (1999) Homofermentative production of d-or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154. doi:10.1128/aem.67.1.148-154.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen C-C, Ju L-K (1998) Adsorption characteristics of polyvinylpyridine and activated carbon for lactic acid recovery from fermentation of Lactobacillus delbrueckii. Sep Sci Technol 33:1423–1437

    Article  CAS  Google Scholar 

  24. Chen G-Q (2009) Industrial production of PHA. Plast Bact Nat Funct Appl 14:121

    Google Scholar 

  25. Chen G-Q, Page WJ (1997) Production of poly-b-hydroxybutyrate by Azotobacter vinelandii in a two-stage fermentation process. Biotechnol Tech 11:347–350

    Article  CAS  Google Scholar 

  26. Chen G-Q, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099. doi:10.1021/cr200162d

    Article  CAS  PubMed  Google Scholar 

  27. Cheng K-K, Zhao X-B, Zeng J, Wu R-C, Xu Y-Z, Liu D-H, Zhang J-A (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95:841–850. doi:10.1007/s00253-012-4214-x

    Article  CAS  PubMed  Google Scholar 

  28. Cheng K-K, Zhao X-B, Zeng J, Zhang J-A (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod Biorefin 6:302–318. doi:10.1002/bbb.1327

    Article  CAS  Google Scholar 

  29. Clark S, Singh R (2013) Polylactic acid (PLA) market in packaging, textile, agriculture, transportation, bio-medical, electronics and others—global industry size, company share, growth, trends, strategic analysis and forecast, 2012–2020. Allied Market Research

  30. Cui H, Shao J, Wang Y, Zhang P, Chen X, Wei Y (2013) PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. Biomacromolecules 14:1904–1912

    Article  CAS  PubMed  Google Scholar 

  31. Datta R, Glassner DA (1992) Process for the production and purification of succinic acid. US5143834 A

  32. Davison BH, Scott CD (1992) A proposed biparticle fluidized bed for lactic acid fermentation and simultaneous adsorption. Biotechnol Bioeng 39:365–368

    Article  CAS  PubMed  Google Scholar 

  33. De HAB, Van BJ, VAN DERWPLJ, Jansen PP, VIDAL LJM, CERDÀ BA (2013) Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up. WO2013025107 A1

  34. Dequin S, Baptista E, Barre P (1999) Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am J Enol Vitic 50:45–50

    CAS  Google Scholar 

  35. Djukić-Vuković AP, Mojović LV, Jokić BM, Nikolić SB, Pejin JD (2013) Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresour Technol 135:454–458. doi:10.1016/j.biortech.2012.10.066

    Article  PubMed  CAS  Google Scholar 

  36. Donnelly MI, Millard CS, Chen MJ, Rathke JW, Clark DP (1998) Biotechnology for fuels and chemicals. In: Applied biochemistry and biotechnology, pp 187–198

  37. Eggink G, van der Wal H, Huijberts GN, de Waard P (1992) Oleic acid as a substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163

    Article  CAS  Google Scholar 

  38. Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GMF, Reis MAM (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci 9:454–461. doi:10.1002/elsc.200900034

    Article  CAS  Google Scholar 

  39. World Economic Forum (2016) The new plastics economy: rethinking the future of plastics. Available via DIALOG http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf

  40. Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  PubMed  Google Scholar 

  41. Fukui T, Kichise T, Yoshida Y, Doi Y (1997) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxy-heptanoate) terpolymers by recombinant Alcaligenes eutrophus. Biotechnol Lett 19:1093–1097

    Article  CAS  Google Scholar 

  42. Garde A, Jonsson G, Schmidt A, Ahring B (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol 81:217–223

    Article  CAS  PubMed  Google Scholar 

  43. Ge X-Y, Qian H, Zhang W-G (2009) Improvement of l-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour Technol 100:1872–1874. doi:10.1016/j.biortech.2008.09.049

    Article  CAS  PubMed  Google Scholar 

  44. González MI, Alvarez S, Riera FA, Álvarez R (2008) Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228:84–96

    Article  CAS  Google Scholar 

  45. Gouda M, Swellam A, Omar S (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201

    Article  CAS  PubMed  Google Scholar 

  46. Guettler MV, Jain MK, Rumler D (1996) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US5573931 A

  47. Guettler MV, Jain MK, Soni BK (1996) From fermentation of bacterium 130z. Google Patents

  48. Gullón B, Alonso JL, Parajó JC (2010) Ion-exchange processing of fermentation media containing lactic acid and oligomeric saccharides. Ind Eng Chem Res 49:3741–3750

    Article  CAS  Google Scholar 

  49. Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl Biochem Biotechnol 161:124–136

    Article  CAS  PubMed  Google Scholar 

  50. Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256

    Article  CAS  PubMed  Google Scholar 

  51. Hang Y, Hamamci H, Woodams E (1989) Production of L (+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol Lett 11:119–120

    Article  CAS  Google Scholar 

  52. Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    Article  CAS  PubMed  Google Scholar 

  54. Hong SH (2007) Systems approaches to succinic acid-producing microorganisms. Biotechnol Bioprocess Eng 12:73–79

    Article  CAS  Google Scholar 

  55. Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih J-K, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22:1275–1281

    Article  CAS  PubMed  Google Scholar 

  56. İnci İ, Aşçı YS, Uslu H (2012) LSER modeling of extraction of succinic acid by tridodecylamine dissolved in 2-octanone and 1-octanol. J Ind Eng Chem 18:152–159. doi:10.1016/j.jiec.2011.11.008

    Article  CAS  Google Scholar 

  57. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès A, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  58. Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl Environ Microbiol 71:1964–1970. doi:10.1128/aem.71.4.1964-1970.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) D-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101:172–177. doi:10.1263/jbb.101.172

    Article  CAS  PubMed  Google Scholar 

  60. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893. doi:10.1002/bit.22005

    Article  CAS  PubMed  Google Scholar 

  61. Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. In: Plastics from bacteria. Springer, Berlin, pp 323–346

    Chapter  Google Scholar 

  62. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates*. Annu Rev Microbiol 56:403–432

    Article  CAS  PubMed  Google Scholar 

  63. John RP, Nampoothiri KM, Pandey A (2006) Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnol Lett 28:1823–1826

    Article  CAS  PubMed  Google Scholar 

  64. John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem 41:759–763

    Article  CAS  Google Scholar 

  65. Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 2012

  66. Kahar P, Tsuge T, Tguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86

    Article  CAS  Google Scholar 

  67. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2007) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062. doi:10.1007/s00253-007-1244-x

    Article  PubMed  CAS  Google Scholar 

  68. Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428. doi:10.1128/aem.72.5.3418-3428.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kfoury G, Raquez J-M, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1. doi:10.3389/fchem.2013.00032

  70. Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424. doi:10.1007/s00253-012-4649-0

    Article  CAS  PubMed  Google Scholar 

  71. Kichise T, Taguchi S, Doi Y (2002) Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol 68:2411–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898. doi:10.1002/bit.260430908

    Article  CAS  PubMed  Google Scholar 

  73. Kim BS, Lee SY, Chang HN (1992) Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14:811–816

    Article  CAS  Google Scholar 

  74. Kim J-H, Block DE, Shoemaker SP, Mills DA (2010) Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl Microbiol Biotechnol 86:1375–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim J-H, Shoemaker SP, Mills DA (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155:1351–1359

    Article  CAS  PubMed  Google Scholar 

  76. Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kocharin K, Siewers V, Nielsen J (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 110:2216–2224

    Article  CAS  PubMed  Google Scholar 

  78. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  79. Krzyżaniak A, Leeman M, Vossebeld F, Visser TJ, Schuur B, de Haan AB (2013) Novel extractants for the recovery of fermentation derived lactic acid. Sep Purif Technol 111:82–89. doi:10.1016/j.seppur.2013.03.031

    Article  CAS  Google Scholar 

  80. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107:240–245

    Article  CAS  PubMed  Google Scholar 

  81. Kumar R, Nanavati H, Noronha SB, Mahajani SM (2006) A continuous process for the recovery of lactic acid by reactive distillation. J Chem Technol Biotechnol 81:1767–1777

    Article  CAS  Google Scholar 

  82. Kunasundari B (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5:620–634. doi:10.3144/expresspolymlett.2011.60

    Article  Google Scholar 

  83. Kurzrock T, Weuster-Botz D (2011) New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst Eng 34:779–787

    Article  CAS  PubMed  Google Scholar 

  84. Kwon S, Yoo I-K, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34

    Article  CAS  PubMed  Google Scholar 

  85. Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microb Technol 39:1471–1475. doi:10.1016/j.enzmictec.2006.03.037

    Article  CAS  Google Scholar 

  86. Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F (1996) Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142:1169–1180

    Article  CAS  PubMed  Google Scholar 

  87. Lee P, Lee S, Hong S, Chang H, Park S (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114

    Article  CAS  PubMed  Google Scholar 

  88. Lee P, Lee W, Kwon S, Lee S, Chang H (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27

    Article  CAS  PubMed  Google Scholar 

  89. Lee PC, Lee SY, Hong SH, Chang HN (2003) Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst Eng 26:63–67. doi:10.1007/s00449-003-0341-1

    Article  CAS  PubMed  Google Scholar 

  90. Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (1999) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2, CO2 supply and glucose concentration. Enzym Microb Technol 24:549–554

    Article  CAS  Google Scholar 

  91. Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48

    Article  CAS  PubMed  Google Scholar 

  92. Lee SC (2011) Extraction of succinic acid from simulated media by emulsion liquid membranes. J Membr Sci 381:237–243

    Article  CAS  Google Scholar 

  93. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948. doi:10.1128/aem.72.3.1939-1948.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee SLSHHCP (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668. doi:10.1007/s00253-002-0935-6

    Article  CAS  PubMed  Google Scholar 

  95. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  96. Lee SY, Song H, Jang YS, Lee JW (2008) Gene encoding malic enzyme and method for preparing succinic acid using the same. US7470770 B2

  97. Li J, Zheng X-Y, Fang X-J, Liu S-W, Chen K-Q, Jiang M, Wei P, Ouyang P-K (2011) A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresour Technol 102:6147–6152. doi:10.1016/j.biortech.2011.02.093

    Article  CAS  PubMed  Google Scholar 

  98. Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147:1–9

    Article  CAS  PubMed  Google Scholar 

  100. Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol 143:405–412. doi:10.1016/j.biortech.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  101. Lim S-P, Gan S-N, Tan IK (2005) Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Appl Biochem Biotechnol 126:23–33

    Article  CAS  PubMed  Google Scholar 

  102. Linko S, Vaheri H, Seppälä J (1993) Production of poly-β-hydroxybutyrate on lactic acid by Alcaligenes eutrophus H16 in a 3-l bioreactor. Enzyme Microb Technol 15:401–406

    Article  CAS  Google Scholar 

  103. Litsanov B, Brocker M, Bott M (2013) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 6:189–195. doi:10.1111/j.1751-7915.2012.00347.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Litsanov B, Kabus A, Brocker M, Bott M (2012) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5:116–128. doi:10.1111/j.1751-7915.2011.00310.x

    Article  CAS  PubMed  Google Scholar 

  105. Liu F, Li W, Ridgway D, Gu T, Shen Z (1998) Production of poly-β-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnol Lett 20:345–348

    Article  CAS  Google Scholar 

  106. Liu R, Liang L, Cao W, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresour Technol 135:574–577. doi:10.1016/j.biortech.2012.08.120

    Article  CAS  PubMed  Google Scholar 

  107. Lu Z, Lu M, He F, Yu L (2009) An economical approach for d-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresour Technol 100:2026–2031

    Article  CAS  PubMed  Google Scholar 

  108. Lu Z, Wei M, Yu L (2012) Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 47:410–415. doi:10.1016/j.procbio.2011.11.022

    Article  CAS  Google Scholar 

  109. Lemoigne M (1926) Products of dehydration and of polymerization of beta-hydroxybutyric acid. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  110. Ma K, Maeda T, You H, Shirai Y (2014) Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35

    Article  CAS  PubMed  Google Scholar 

  111. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Marques S, Santos JA, Gírio FM, Roseiro JC (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem Eng J 41:210–216

    Article  CAS  Google Scholar 

  113. Matsumoto KI, Aoki E, Takase K, Doi Y, Taguchi S (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442

    Article  CAS  PubMed  Google Scholar 

  114. Ki Matsumoto, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1 Ps and the phaG Ps genes of Pseudomonas sp. 61-3. Biomacromolecules 2:934–939

    Article  CAS  Google Scholar 

  115. Ki Matsumoto, Takase K, Aoki E, Doi Y, Taguchi S (2005) Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: enhancement of PHA production and alteration of polymer molecular weight. Biomacromolecules 6:99–104

    Article  CAS  Google Scholar 

  116. Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22

    Article  CAS  PubMed  Google Scholar 

  117. Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y (2000) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl Microbiol Biotechnol 53:401–409

    Article  CAS  PubMed  Google Scholar 

  118. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng 9:177–192

    Article  CAS  PubMed  Google Scholar 

  119. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740. doi:10.1007/s00253-007-1057-y

    Article  CAS  PubMed  Google Scholar 

  120. Melzoch K, Votruba J, Hábová V, Mr Rychtera (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 56:25–31

    Article  CAS  PubMed  Google Scholar 

  121. Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135. doi:10.1002/bit.21521

    Article  CAS  PubMed  Google Scholar 

  122. Moldes A, Alonso J, Parajo J (2003) Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst Eng 25:357–363

    Article  CAS  PubMed  Google Scholar 

  123. Moraes LdS, Kronemberger FdA, Ferraz HC, Habert AC (2015) Liquid–liquid extraction of succinic acid using a hollow fiber membrane contactor. J Ind Eng Chem 21:206–211. doi:10.1016/j.jiec.2014.02.026

    Article  CAS  Google Scholar 

  124. Muhammet Şaban T (2012) Optimization of lactic acid production with immobilized Rhizopus oryzae. Afr J Biotechnol 11. doi:10.5897/ajb11.1706

  125. Naveena BJ, Altaf M, Bhadrayya K, Reddy G (2004) Production of L (+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technol Biotechnol 472:147–152

    Google Scholar 

  126. Noda I, Lindsey SB, Caraway D (2009) Nodax™ cass PHA copolymers: their properties and applications. Plast Bact Nat Funct Appl 14:237

    Google Scholar 

  127. Ohleyer E, Blanch HW, Wilke CR (1985) Continuous production of lactic acid in a cell recycle reactor. Appl Biochem Biotechnol 11:317–332

    Article  CAS  Google Scholar 

  128. Okano K, Kimura S, Narita J, Fukuda H, Kondo A (2007) Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Appl Microbiol Biotechnol 75:1007–1013. doi:10.1007/s00253-007-0905-0

    Article  CAS  PubMed  Google Scholar 

  129. Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) d-lactic acid production from cellooligosaccharides and β-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650

    Article  CAS  PubMed  Google Scholar 

  130. Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  131. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464. doi:10.1007/s00253-008-1668-y

    Article  CAS  PubMed  Google Scholar 

  132. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454. doi:10.1007/s00253-007-1336-7

    Article  CAS  PubMed  Google Scholar 

  133. Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, p 221

  134. Park D, Zeikus J (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Park J, Chang H (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  PubMed  Google Scholar 

  136. Park S, Choi J-I, Lee S (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 36:579–588

    Article  CAS  Google Scholar 

  137. Park S, Choi J-I, Lee S (2005) Short-chain-length polyhydroxyalkanoates: synthesis in metabolically engineered Escherichia coli and medical applications. J Microbiol Biotechnol 15:206–215

    CAS  Google Scholar 

  138. Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:82–87

    Article  Google Scholar 

  139. Park SJ, Kim TW, Kim MK, Lee SY, Lim S-C (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206. doi:10.1016/j.biotechadv.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  140. Park SJ, Lee SY (2004) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 114:335–346

    Article  Google Scholar 

  141. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523

    Article  CAS  PubMed  Google Scholar 

  142. Poirier Y, Erard N, Petetot JMC (2001) Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol 67:5254–5260. doi:10.1128/aem.67.11.5254-5260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol 13:142–150

    Article  CAS  Google Scholar 

  144. Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294–298

    Article  CAS  PubMed  Google Scholar 

  145. Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12:518–525. doi:10.1016/j.ymben.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  146. Raab AM, Hlavacek V, Bolotina N, Lang C (2011) Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 77:1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ramchandran L, Sanciolo P, Vasiljevic T, Broome M, Powell I, Duke M (2012) Improving cell yield and lactic acid production of Lactococcus lactis ssp. cremoris by a novel submerged membrane fermentation process. J Membr Sci 403–404:179–187. doi:10.1016/j.memsci.2012.02.042

    Article  CAS  Google Scholar 

  148. Ramsay JA, Berger E, Voyer R, Chavarie C, Ramsay BA (1994) Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol Tech 8:589–594. doi:10.1007/bf00152152

    Article  CAS  Google Scholar 

  149. Ranjan P, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, Cardayre Sd (2002) Genome shuffling of Lactobaciillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  Google Scholar 

  150. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  PubMed  Google Scholar 

  151. Rojan PJ, Nampoothiri KM, Nair AS, Pandey A (2005) L (+)-Lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol Lett 27:1685–1688

    Article  CAS  PubMed  Google Scholar 

  152. Rush B (2013) Turning a novel yeast into a platform host for industrial production of fuels and chemicals. In: Metabolic engineering IX, 2013. ECI symposium series

  153. Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Bioeng 82:864–871

    Article  CAS  PubMed  Google Scholar 

  154. Saito S, Mieno Y, Nagashima T, Kumagai C, Kitamoto K (1996) Breeding of a new type of baker’s yeast by δ-integration for overproduction of glucoamylase using a homothallic yeast. J Ferment Bioeng 81:98–103

    Article  CAS  Google Scholar 

  155. Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, Marchi D, Mazzocchetti L, Torri C, Tagliavini E (2015) Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 17:1047–1056. doi:10.1039/c4gc01821d

    Article  CAS  Google Scholar 

  156. Samuelov N, Lamed R, Lowe S, Zeikus J (1991) Influence of CO2-HCO3−levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sánchez AM, Bennett GN, San K-Y (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239. doi:10.1016/j.ymben.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  158. Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699. doi:10.1007/s00253-008-1703-z

    Article  CAS  PubMed  Google Scholar 

  159. Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40. doi:10.1002/bbb.189

    Article  CAS  Google Scholar 

  160. Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H (2014) Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol 174:190–197. doi:10.1016/j.biortech.2014.09.137

    Article  CAS  PubMed  Google Scholar 

  161. Sikder J, Chakraborty S, Pal P, Drioli E, Bhattacharjee C (2012) Purification of lactic acid from microfiltrate fermentation broth by cross-flow nanofiltration. Biochem Eng J 69:130–137. doi:10.1016/j.bej.2012.09.003

    Article  CAS  Google Scholar 

  162. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) d-(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    Article  CAS  Google Scholar 

  163. Song H, Kim TY, Choi B-K, Choi SJ, Nielsen LK, Chang HN, Lee SY (2008) Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl Microbiol Biotechnol 79:263–272

    Article  CAS  PubMed  Google Scholar 

  164. Song H, Lee JW, Choi S, You JK, Hong WH, Lee SY (2007) Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnol Bioeng 98:1296–1304

    Article  CAS  PubMed  Google Scholar 

  165. Song S, Hein S, Steinbüchel A (1999) Production of poly (4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol Lett 21:193–197

    Article  CAS  Google Scholar 

  166. Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940

    Article  CAS  Google Scholar 

  167. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  168. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175. doi:10.1016/j.biotechadv.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  169. Suzuki T, Yamane T, Shimizu S (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374

    Article  CAS  Google Scholar 

  170. Suzuki Y, Kurano M, Arai Y, Nakashita H, Doi Y, Usami R, Horikoshi K, Yamaguchi I (2002) Enzyme inhibitors to increase poly-3-hydroxybutyrate production by transgenic tobacco. Biosci Biotechnol Biochem 66:2537–2542

    Article  CAS  PubMed  Google Scholar 

  171. Tai Y-S, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol. doi:10.1038/nchembio.2020

    PubMed  Google Scholar 

  172. Takase K, Matsumoto KI, Taguchi S, Doi Y (2004) Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5:480–485

    Article  CAS  PubMed  Google Scholar 

  173. Takase K, Taguchi S, Doi Y (2003) Enhanced synthesis of poly (3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J Biochem 133:139–145

    Article  CAS  PubMed  Google Scholar 

  174. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  CAS  PubMed  Google Scholar 

  175. Tango M, Ghaly A (2002) A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl Microbiol Biotechnol 58:712–720

    Article  CAS  PubMed  Google Scholar 

  176. Taskila S, Ojamo H (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. doi:10.5772/51282

    Google Scholar 

  177. Tokuhiro K, Ishida N, Kondo A, Takahashi H (2008) Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Appl Microbiol Biotechnol 79:481–488

    Article  CAS  PubMed  Google Scholar 

  178. Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H (2009) Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82:883–890. doi:10.1007/s00253-008-1831-5

    Article  CAS  PubMed  Google Scholar 

  179. Tsuge T, Watanabe S, Sato S, Hiraishi T, Abe H, Doi Y, Taguchi S (2007) Variation in copolymer composition and molecular weight of polyhydroxyalkanoate generated by saturation mutagenesis of Aeromonas caviae PHA synthase. Macromol Biosci 7:846–854. doi:10.1002/mabi.200700023

    Article  CAS  PubMed  Google Scholar 

  180. Tsuge T, Watanabe S, Shimada D, Abe H, Taguchi S (2007) Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 277:217–222

    Article  CAS  PubMed  Google Scholar 

  181. Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alcohol by the methylotrophic bacteria Paracoccus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 58:3574–3579

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Urbance SE, Pometto AL III, DiSpirito AA, Demirci A (2003) Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol 17:53–65

    Article  CAS  Google Scholar 

  183. Urbance SE, Pometto AL III, DiSpirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670

    Article  CAS  PubMed  Google Scholar 

  184. Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342

    Article  PubMed  Google Scholar 

  185. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727. doi:10.1128/aem.68.4.1715-1727.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Venkatesh K (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98

    Article  CAS  Google Scholar 

  187. Vickroy TB (1985) Lactic acid. In: Comprehensive biotechnology. The practise of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, pp 761–776

  188. Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. doi:10.1016/s0141-3910(02)00372-5

    Article  CAS  Google Scholar 

  189. Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551–564. doi:10.1002/mabi.200400023

    Article  CAS  PubMed  Google Scholar 

  190. Wang C, Li Q, Tang H, Zhou W, Yan D, Xing J, Wan Y (2013) Clarification of succinic acid fermentation broth by ultrafiltration in succinic acid bio-refinery. J Chem Technol Biotechnol 88:444–448. doi:10.1002/jctb.3834

    Article  CAS  Google Scholar 

  191. Wang C, Li Q, Wang D, Xing J (2014) Improving the lactic acid production of Actinobacillus succinogenes by using a novel fermentation and separation integration system. Process Biochem 49:1245–1250. doi:10.1016/j.procbio.2014.04.009

    Article  CAS  Google Scholar 

  192. Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 156:6–13. doi:10.1016/j.biortech.2013.12.043

    Article  CAS  PubMed  Google Scholar 

  193. Wang J, Yu J (2001) Kinetic analysis on formation of poly (3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol 26:121–126

    Article  CAS  PubMed  Google Scholar 

  194. Wang P, Zhang FY (2014) Lactic acid fermentation of potato pulp by Rhizopus oryzae IFO 5740. Afr J Food Sci 8:196–199

    Article  CAS  Google Scholar 

  195. Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  CAS  PubMed  Google Scholar 

  196. Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  197. Wee Y-J, Yun J-S, Lee YY, Zeng A-P, Ryu H-W (2005) Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. J Biosci Bioeng 99:104–108. doi:10.1263/jbb.99.104

    Article  CAS  PubMed  Google Scholar 

  198. Wee Y-J, Yun J-S, Park D-H, Ryu H-W (2004) Biotechnological production of L (+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnol Lett 26:71–74

    Article  CAS  PubMed  Google Scholar 

  199. Xiong M, Schneiderman D, Bates FS, Hillmyer MA, Zhang K (2014) Scalable production of mechanically tunable block polymers from sugar. Proc Nat Acad Sci 111:8357–8362. doi:10.1073/pnas.1404596111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yamane T (1993) Yield of poly-d (-)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170

    Article  CAS  PubMed  Google Scholar 

  201. Yan Q, Zheng P, Tao S-T, Dong J-J (2014) Fermentation process for continuous production of succinic acid in a fibrous bed bioreactor. Biochem Eng J 91:92–98. doi:10.1016/j.bej.2014.08.002

    Article  CAS  Google Scholar 

  202. Yanez R, Alonso JL, Parajó JC (2005) d-Lactic acid production from waste cardboard. J Chem Technol Biotechnol 80:76–84

    Article  CAS  Google Scholar 

  203. Yankov D, Molinier J, Kyuchoukov G, Malmary G (2005) Improvement of the lactic acid extraction. Extraction from aqueous solutions and simulated fermentation broth by means of mixed extractant and TOA, partially loaded with HCl. Chem Biochem Eng Q 19:17–24

    CAS  Google Scholar 

  204. Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44

    Article  CAS  PubMed  Google Scholar 

  205. Yedur S, Berglund KA, Dunuwila DD (2001) Succinic acid production and purification. US6265190 B1

  206. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  207. Yu J, Chen LXL (2006) Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnol Prog 22:547–553. doi:10.1021/bp050362g

    Article  CAS  PubMed  Google Scholar 

  208. Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159. doi:10.1016/j.jbiotec.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  209. Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401. doi:10.1128/aem.02902-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399. doi:10.1016/j.biortech.2014.02.128

    Article  CAS  PubMed  Google Scholar 

  211. Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y (2014) Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour Technol 163:160–166. doi:10.1016/j.biortech.2014.04.038

    Article  CAS  PubMed  Google Scholar 

  212. Zhang Y, Cong W, Shi SY (2011) Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioprocess Biosystems Eng 34:67–73

    Article  CAS  Google Scholar 

  213. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263. doi:10.1016/j.bej.2007.01.028

    Article  CAS  Google Scholar 

  214. Zheng P, Dong J-J, Sun Z-H, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429. doi:10.1016/j.biortech.2008.11.043

    Article  CAS  PubMed  Google Scholar 

  215. Zheng P, Fang L, Xu Y, Dong J-J, Ni Y, Sun Z-H (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol 101:7889–7894. doi:10.1016/j.biortech.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  216. Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407. doi:10.1128/aem.69.1.399-407.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhou S, Shanmugam KT, Ingram LO (2003) Functional replacement of the Escherichia coli d-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69:2237–2244. doi:10.1128/aem.69.4.2237-2244.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF) under the Center for Sustainable Polymers CHE-1413862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kechun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambunathan, P., Zhang, K. Engineered biosynthesis of biodegradable polymers. J Ind Microbiol Biotechnol 43, 1037–1058 (2016). https://doi.org/10.1007/s10295-016-1785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1785-z

Keywords

Navigation