Skip to main content

Advertisement

Log in

Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L−1 of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L−1 and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armenta RE, Scott SD, Burja AM, Radianingtyas H, Barrow CJ (2009) Optimization of fatty acid determination in selected fish and microalgal oils. Chromatographia 70:629–636. doi:10.1365/s10337-009-1143-7

    Article  CAS  Google Scholar 

  2. Armenta RE, Valentine MC (2013) Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc 90:167–182. doi:10.1007/s11746-012-2154-3

    Article  CAS  Google Scholar 

  3. Bongiorni L (2012) Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments. In: Raghukumar C (ed) Biology of Marine Fungi. Springer, Berlin, Heidelberg, pp 1–13

  4. Bongiorni L, Pignataro L, Santangelo G (2002) Thraustochytrids (fungoid protist): an unexplored component of marine sediment microbiota. Sci Mar 68:43–48. doi:10.3989/scimar.2004.68s143

    Google Scholar 

  5. Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  6. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  7. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46. doi:10.1007/s00253-011-3311-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169. doi:10.1007/s00253-006-0419-1

    Article  CAS  PubMed  Google Scholar 

  9. Dennis DA, Armenta RE (2015) Methods of recovering oil from microorganisms. 1–16. United States Patent Application US 20150176042 A1

  10. Discart V, Bilad MR, Marbelia L, Vankelecom IFJ (2014) Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol 152:321–328. doi:10.1016/j.biortech.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  11. Fan KW, Chen F, Jones EBG, Vrijmoed LLP (2000) Utilization of food processing waste by thraustochytrids. Fungal Divers 5:185–194

    Google Scholar 

  12. Fon Sing S, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54. doi:10.1016/j.biortech.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein S (1963) Development and nutrition of new species of thraustochytrium. Am J Bot 50:271–279. doi:10.2307/2440021

    Article  CAS  Google Scholar 

  14. Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  15. Huang J, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5:450–457. doi:10.1007/s10126-002-0110-1

    Article  CAS  PubMed  Google Scholar 

  16. Lanzetta P, Alvarez L, Reinach P, Candia O (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97. doi:10.1016/0003-2697(79)90115-5

    Article  CAS  PubMed  Google Scholar 

  17. Lee Chang KJ, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol N Y N 16:396–411. doi:10.1007/s10126-014-9560-5

    Article  Google Scholar 

  18. Lee Chang KJ, Nichols PD, Blackburn SI (2013) More than biofuels—potential uses of microalgae as sources of high-value lipids. Lipid Technol 25:199–203. doi:10.1002/lite.201300295

    Article  Google Scholar 

  19. Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868. doi:10.1016/j.apenergy.2012.10.067

    Article  CAS  Google Scholar 

  20. Li J, Ren L, Sun G-N, Qu L, Huang H (2013) Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS J Integr Biol 17:269–281. doi:10.1089/omi.2012.0088

    Article  CAS  Google Scholar 

  21. Liu Y, Singh P, Sun Y, Luan S, Wang G (2013) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98:3241–3255. doi:10.1007/s00253-013-5391-y

    Article  PubMed  Google Scholar 

  22. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. doi:10.1002/bit.21489

    Article  CAS  PubMed  Google Scholar 

  23. Long W (2015) Automated amino acid analysis using an agilent Poroshell HPH-C18 Column. Available via AGILENT. http://www.agilent.com/cs/library/applications/5991-5571EN.pdf

  24. Lowrey J, Armenta RE, Brooks MS (2015) Nutrient and media recycling in heterotrophic microalgae cultures. Appl Microbiol Biotechnol 100:1061–1075. doi:10.1007/s00253-015-7138-4

    Article  PubMed  Google Scholar 

  25. Lowrey J, Armenta RE, Brooks MS (2016) Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid. Bioresour Technol 209:333–342. doi:10.1016/j.biortech.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  26. Lowrey J, Brooks MS, Armenta RE (2016) Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid. Appl Microbiol Biotechnol. doi:10.1007/s00253-016-7463-2

    Google Scholar 

  27. Lowrey J, Brooks MS, McGinn PJ (2014) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498. doi:10.1007/s10811-014-0459-3

    Article  Google Scholar 

  28. McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247. doi:10.1007/s11120-011-9638-0

    Article  CAS  PubMed  Google Scholar 

  29. Patil KP, Gogate PR (2015) Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J 268:187–196. doi:10.1016/j.cej.2015.01.050

    Article  CAS  Google Scholar 

  30. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. doi:10.1016/j.watres.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  31. Perkins FO (1973) Observations of thraustochytriaceous (Phycomycetes) and labyrinthulid (Rhizopodea) ectoplasmic nets on natural and artificial substrates—an electron microscope study. Can J Bot 51:485–491. doi:10.1139/b73-057

    Article  Google Scholar 

  32. Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202. doi:10.1007/s10529-005-5335-4

    Article  CAS  PubMed  Google Scholar 

  33. Qu L, Ren L-J, Li J, Sun G-N, Sun L-N, Ji X-J, Nie Z-K, Huang H (2013) Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexanoic acid producing Schizochytrium sp. strains. Appl Biochem Biotechnol 171:1865–1876. doi:10.1007/s12010-013-0456-z

    Article  CAS  PubMed  Google Scholar 

  34. Raghukumar S (1992) Bacterivory: a novel dual role for thraustochytrids in the sea. Mar Biol 113:165–169. doi:10.1007/BF00367650

    Article  Google Scholar 

  35. Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640. doi:10.1007/s10126-008-9135-4

    Article  CAS  PubMed  Google Scholar 

  36. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424. doi:10.1016/j.apenergy.2010.11.025

    Article  CAS  Google Scholar 

  37. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. doi:10.1002/bit.22033

    Article  CAS  PubMed  Google Scholar 

  38. Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48:267–272. doi:10.1016/j.enzmictec.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  39. Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73:180–182. doi:10.1271/bbb.80416

    Article  CAS  PubMed  Google Scholar 

  40. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. doi:10.1021/ac60252a045

    Article  CAS  Google Scholar 

  41. Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102:323–327. doi:10.1263/jbb.102.323

    Article  CAS  PubMed  Google Scholar 

  42. Yang C, Ding Z, Zhang K (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J Microbiol Biotechnol 24:2919–2925. doi:10.1007/s11274-008-9833-0

    Article  CAS  Google Scholar 

  43. Zheng H, Gao Z, Yin F, Ji X, Huang H (2012) Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresour Technol 117:1–6. doi:10.1016/j.biortech.2012.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Mitacs through the Mitacs-Accelerate Program (IT04538) in partnership with Dalhousie University and Mara Renewables Corporation and support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Special thanks for technical support owed to Analytical Chemist Spencer Scott and the staff at Mara Renewables Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Lowrey.

Ethics declarations

Funding

This work was supported by Mitacs through the Mitacs-Accelerate Program (IT04538) in partnership with Dalhousie University and Mara Renewables Corporation.

Conflict of interest

Joshua Lowrey declares that he has no conflict of interest. Roberto E. Armenta declares that she has no conflict of interest. Marianne S. Brooks declares that he has no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowrey, J., Armenta, R.E. & Brooks, M.S. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass. J Ind Microbiol Biotechnol 43, 1105–1115 (2016). https://doi.org/10.1007/s10295-016-1779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1779-x

Keywords

Navigation