Skip to main content
Log in

High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01–0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akino T, Nakamura N, Horikoshi K (1987) Production of β -mannosidase and β -mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol 26:323–327

    Article  CAS  Google Scholar 

  2. Akita M, Takeda N, Hirasawa K, Sakai H, Kawamoto M, Yamamoto M, Grant WD, Hatada Y, Ito S, Horikoshi K (2004) Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallogr D Biol Crystallogr 60:1490–1492

    Article  PubMed  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  4. Chauhan PS, Tripathi SP, Sangamwar AT, Puri N, Sharma P, Gupta N (2015) Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11. Appl Microbiol Biotechnol 99(21):8917–8925

    Article  CAS  PubMed  Google Scholar 

  5. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  6. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216

    Article  CAS  PubMed  Google Scholar 

  7. Duan X, Chen J, Wu J (2013) Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Bioresour Technol 146:379–385

    Article  CAS  PubMed  Google Scholar 

  8. Duan X, Zou C, Wu J (2015) Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. Bioresour Technol 194:137–143

    Article  CAS  PubMed  Google Scholar 

  9. Fang S, Li J, Liu L, Du G, Chen J (2011) Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioresour Technol 102(22):10671–10678

    Article  CAS  PubMed  Google Scholar 

  10. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y, Grant WD, Ito S, Horikoshi K (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500

    Article  CAS  PubMed  Google Scholar 

  11. Huang H, Yang P, Luo H, Tang H, Shao N, Yuan T, Wang Y, Bai Y, Yao B (2008) High-level expression of a truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 78(1):95–103

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Yang P, Meng K, Wang Y, Luo H, Wu N, Fan Y, Yao B (2008) Gene cloning, expression, and characterization of a novel beta-mannanase from Bacillus circulans CGMCC1416. J Microbiol Biotechnol 18:160–166

    CAS  PubMed  Google Scholar 

  13. Lin SS, Dou WF, Xu HY, Li HZ, Xu ZH, Ma YH (2007) Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology. Appl Microbiol Biotechnol 75(5):1015–1022

    Article  CAS  PubMed  Google Scholar 

  14. Ma YH, Xue YF, Dou YT, Xu ZH, Tao WY, Zhou PJ (2004) Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8:447–454

    Article  CAS  PubMed  Google Scholar 

  15. Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol 31(8):1167–1175

    Article  CAS  PubMed  Google Scholar 

  16. Pan X, Zhou J, Tian A, Le K, Yuan H, Xue Y, Ma Y, Lu H (2011) High level expression of a truncated β-mannanase from alkaliphilic Bacillus sp. N16-5 in Kluyveromyces cicerisporus. Biotechnol Lett 33(3):565–570

    Article  CAS  PubMed  Google Scholar 

  17. Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392

    Article  CAS  PubMed  Google Scholar 

  18. Weickert MJ, Doherty DH, Best EA, Olins PO (1996) Optimization of heterologous protein production in Escherichia coli. Curr Opin Biotechnol 7:494–499

    Article  CAS  PubMed  Google Scholar 

  19. Yang P, Li Y, Wang Y, Meng K, Luo H, Yuan T, Bai Y, Zhan Z, Yao B (2009) A novel beta-mannanase with high specific activity from Bacillus circulans CGMCC1554: gene cloning, expression and enzymatic characterization. Appl Biochem Biotechnol 159(1):85–94

    Article  CAS  PubMed  Google Scholar 

  20. Yu S, Li Z, Wang Y, Chen W, Fu L, Tang W, Chen C, Liu Y, Zhang X, Ma L (2015) High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris. Biotechnol Lett 37(9):1853–1859

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y, Gao F, Peng H, Wang X, Gao GF, Ma Y (2011) Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PLoS One 6(1):e14608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng H, Liu Y, Sun M, Han Y, Wang J, Sun J, Lu F (2014) Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis. J Ind Microbiol Biotechnol 41(1):153–162

    Article  PubMed  Google Scholar 

  23. Zhu T, You L, Gong F, Xie M, Xue Y, Li Y, Ma Y (2011) Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme Microb Technol 49(4):407–412

    Article  CAS  PubMed  Google Scholar 

  24. Zou C, Duan X, Wu J (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresour Technol 172:174–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the National High Technology Research and Development Program of China (Grant 2014AA021302 and 2014AA021303) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Yu, Z., Fu, X. et al. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. J Ind Microbiol Biotechnol 43, 977–987 (2016). https://doi.org/10.1007/s10295-016-1773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1773-3

Keywords

Navigation