Skip to main content
Log in

Enhanced succinic acid productivity by expression of mgtCB gene in Escherichia coli mutant

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, a novel engineering Escherichia coli strain (CBMG111) with the expression of mgtCB gene was constructed for the enhanced fermentative production of succinic acid by utilizing the synergetic effect of mgtC gene to improve the growth of strains at the environment of low Mg2+ concentration and mgtB to enhance the transport of Mg2+ into cells. After the effect of the expression of the individual genes (mgtA, mgtB, mgtC) on the growth of E. coli was clarified, the fermentative production of succinic acid by CBMG111 was studied with the low-price mixture of Mg(OH)2 and NH3·H2O as the alkaline neutralizer and the biomass hydrolysates as the carbon sources, which demonstrated that the expression of mgtCB gene can significantly increase the productivity of succinic acid (2.97 g L−1 h−1) compared with that by using the engineering strain with the overexpression of mgtA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adina-Zada A, Zeczycki TN, Attwood PV (2012) Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. Arch Biochem Biophys 519:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanc-Potard AB, Lafay B (2003) MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics. J Mol Evol 57:479–486

    Article  CAS  PubMed  Google Scholar 

  3. Blanc-Potard AB, Groisman EA (1997) The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boernke WE, Millard CS, Stevens PW, Kakar SN, Stevens FJ, Donnelly MI (1995) Stringency of substrate specificity of Escherichia coli malate dehydrogenase. Acta Biochim Biophy 332:43–52

    Google Scholar 

  5. Bretz K, Kabasci S (2012) Feed-control development for succinic acid production with Anaerobiospirillum succiniciproducens. Biotechnol Bioeng 109:1187–1192

    Article  CAS  PubMed  Google Scholar 

  6. Carvalho M, Matos M, Roca C, Reis MAM (2014) Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor. New Biotechnol 31:133–139

    Article  CAS  Google Scholar 

  7. Gunzel D, Kucharski LM, Kehres DG, Romero MF, Maguire ME (2006) The MgtC virulence factor of Salmonella enterica serovar typhimurium activates Na+, K+-ATPase. J Bacteriol 188:5586–5594

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171:4742–4751

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jost B, Holz M, Aurich A, Barth G, Bely T, Muller RA (2015) The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl Microbiol Technol 99:1675–1686

    Article  CAS  Google Scholar 

  10. Kai Y, Matsumura H, Izui K (2003) Phosphoenolpyruvate carboxylase, three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179

    Article  CAS  PubMed  Google Scholar 

  11. Kodaki T, Katagiri F, Asano M, Izui K, Katsuki H (1985) Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J Biochem 97:533–539

    CAS  PubMed  Google Scholar 

  12. Liang LY, Liu RM, Ma JF, Chen KQ, Jiang M, Wei P (2011) Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase. Biotechnol Lett 33:2439–2444

    Article  CAS  PubMed  Google Scholar 

  13. Liu RM, Liang LY, Li F, Wu MK, Chen KQ, Ma JF, Jiang M, Wei P, Ouyang PK (2013) Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineering Escherichia coli. Bioresour Technol 149:84–91

    Article  CAS  PubMed  Google Scholar 

  14. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Wei P (2008) Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J Chem Technol Biotechnol 83:722–729

    Article  CAS  Google Scholar 

  15. Ma JF, Li F, Liu RM, Liang LY, Ji YL, Wei C, Jiang M, Jia HH, Ouyang PK (2014) Succinic acid production from sucrose and molasses by metabolically engineering E. coli using a cell surface display system. Biochem Eng 91:240–249

    Article  CAS  Google Scholar 

  16. Maloney KE, Valvano MA (2006) The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect Immun 74:5477–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto J, Sakamoto K, Shinjyo N, Kido Y, Yamamoto N, Yaqi K, Miyoshi H, Nonaka N, Kita K, Oku Y (2008) Anaerobic NADH-funarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of Alveolar Echinococcosis. Antimicrob Agents Chemother 52:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  19. Mienda BS, Shamsir MS, IIIias RM (2015) In silico prediction of gene knockout candidates in Escherichia coli genome-scale model for enhanced succinic acid production from glycerol. Curr Sci 108:1131–1138

    CAS  Google Scholar 

  20. Moncrief MBC, Maguire ME (1998) Magnesium and the role of mgtC in growth of Salmonella typhimurium. Infect Immun 66:3802–3809

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oh YH, Oh IJ, Jung C, Lee SY, Lee J (2010) The effect of protectants and pH changes on the cellular growth and succinic acid yield of Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 20:1677–1680

    CAS  PubMed  Google Scholar 

  22. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineering Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  23. Rang C, Alix E, Felix C, Heitz A, Tasse L, Blanc-Potard AB (2007) Dual role of the MgtC virulence factor in host and non-host environments. Mol Microbiol 63:605–622

    Article  CAS  PubMed  Google Scholar 

  24. Rezaei MN, Aslankoohi E, Vertrepen KJ, Courtin CM (2015) Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation. Int J Food Microbiol 204:24–32

    Article  CAS  PubMed  Google Scholar 

  25. Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniproducens DD1. Biotechnol Lett 31:1947–1951

    Article  CAS  PubMed  Google Scholar 

  26. Shen N, Qin Y, Wang Q, Liao S, Zhu Q, Mi H, Adhikari B, Wei Y, Huang R (2015) Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes. Lett Appl Microbiol 60:544–551

    Article  CAS  PubMed  Google Scholar 

  27. Smith RL, Maguire ME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226

    Article  CAS  PubMed  Google Scholar 

  28. Snavely MD, Miller CG, Maguire ME (1991) The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266:815–823

    CAS  PubMed  Google Scholar 

  29. Tan ZG, Zhu XN, Chen J, Li QY, Zhang XL (2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. App Environ Microb 79:4838–4844

    Article  CAS  Google Scholar 

  30. Tao T, Grulich PF, Kucharski LM, Smith RL, Maguire ME (1998) Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci. Microbiology-UK 144:655–664

    Article  CAS  Google Scholar 

  31. Wang J, Zhang BY, Zhang J, Wang HH, Zhao MH, Wang N, Dong LC, Zhou XH, Wang D (2014) Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgtA in Escherichia coli mutant. Bioresour Technol 170:125–131

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Yomano LP, Lee JY, York SW, Zheng HB, Mullinnix MT, Shanmugam KT, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. P Natl ACAD Sci USA 110:4021–4026

    Article  CAS  Google Scholar 

  33. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Department of energy, Washington, DC, pp 31–33

    Google Scholar 

  34. Yan Q, Zheng P, Dong JJ, Sun ZH (2014) A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biot 89:1760–1766

    Article  CAS  Google Scholar 

  35. Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107:673–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work supported by National Science Foundation of China (21176270, 51272296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichun Dong or Rachel Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, L., Wang, D. et al. Enhanced succinic acid productivity by expression of mgtCB gene in Escherichia coli mutant. J Ind Microbiol Biotechnol 43, 505–516 (2016). https://doi.org/10.1007/s10295-015-1720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1720-8

Keywords

Navigation