Skip to main content
Log in

Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Streptomyces sp. M10 is a valinomycin-producing bacterial strain that shows potent bioactivity against Botrytis blight of cucumber plants. During studies to increase the yield of valinomycin (a cyclododecadepsipeptide) in strain M10, additional antifungal metabolites, including bafilomycin derivatives (macrolide antibiotics), were identified. To examine the effect of bafilomycin biosynthesis on valinomycin production, the bafilomycin biosynthetic gene cluster was cloned from the genome of strain M10, as were two branched-chain α-keto acid dehydrogenase (BCDH) gene clusters related to precursor supply for bafilomycin biosynthesis. A null mutant (M10bafm) of one bafilomycin biosynthetic gene (bafV) failed to produce bafilomycin, but resulted in a 1.2- to 1.5-fold increase in the amount of valinomycin produced. In another null mutant (M10bkdFm) of a gene encoding a subunit of the BCDH complex (bkdF), bafilomycin production was completely abolished and valinomycin production increased fourfold relative to that in the wild-type M10 strain. The higher valinomycin yield was likely the result of redistribution of the metabolic flux from bafilomycin to valinomycin biosynthesis, because the two antibiotics share a common precursor, 2-ketoisovaleric acid, a deamination product of valine. The results show that directing precursor flux toward active ingredient biosynthesis could be used as a prospective tool to increase the competence of biofungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bierman M, Logan R, O’brien K, Seno E, Nagaraja Rao R, Schoner B (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

  2. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brinkman AB, Ettema TJ, De Vos WM, Van Der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cheng YQ (2006) Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in streptomyces tsusimaensis ATCC 15141. Chem Biochem 7:471–477

    CAS  Google Scholar 

  6. Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  7. Crevelin EJ, Canova SP, Melo IS, Zucchi TD, da Silva RE, Moraes LAB (2013) Isolation and characterization of phytotoxic compounds produced by Streptomyces sp. AMC 23 from red mangrove (Rhizophora mangle). Appl Biochem Biotechnol 171:1602–1616

    Article  CAS  PubMed  Google Scholar 

  8. Cropp TA, Smogowicz AA, Hafner EW, Denoya CD, McArthur HA, Reynolds KA (2000) Fatty-acid biosynthesis in a branched-chain α-keto acid dehydrogenase mutant of Streptomyces avermitilis. Can J Microbiol 46:506–514

    Article  CAS  PubMed  Google Scholar 

  9. Debarbouille M, Gardan R, Arnaud M, Rapoport G (1999) Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181:2059–2066

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Denoya CD, Fedechko RW, Hafner EW, McArthur H, Morgenstern MR, Skinner DD, Stutzman-Engwall K, Wax RG, Wernau WC (1995) A second branched-chain alpha-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. J Bacteriol 177:3504–3511

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen J-L, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213

    Article  PubMed Central  PubMed  Google Scholar 

  12. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  13. Goetz MA, McCormick PA, Monaghan RL, Ostlind D, Hensens OD, Liesch JM, Albers-Schonberg G (1985) L-155,175: a new antiparasitic macrolide. Fermentation, isolation and structure. J Antibiot 38:161–168

    Article  CAS  PubMed  Google Scholar 

  14. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hafner EW, Holley BW, Holdom KS, Lee SE, Wax RG, Beck D, Mcarthur HA, Wernau WC (1991) Branched-chain fatty acid requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-oxo acid dehydrogenase activity. J Antibiot 44:349–356

    Article  CAS  PubMed  Google Scholar 

  16. Hopwood D, Bibb M, Chater K, Kieser T, Bruton C, Kieser H, Lydiate D, Smith C, Ward J, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, UK

    Google Scholar 

  17. Huang D, Xia M, Li S, Wen J, Jia X (2013) Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 40:1023–1037

    Article  CAS  PubMed  Google Scholar 

  18. Hwang JY, Kim HS, Kim SH, Oh HR, Nam DH (2013) Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608. AMB Express 3:1–9

    Article  Google Scholar 

  19. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

  20. Kretshmer A, Dorgerloh M, Deeg M, Hagenmaier H (1985) The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. Agric Biol Chem 49:2509–2511

    Article  Google Scholar 

  21. Lee C, Görisch H, Kleinkauf H, Zocher R (1992) A highly specific D-hydroxyisovalerate dehydrogenase from the enniatin producer Fusarium sambucinum. J Biol Chem 267:11741–11744

    CAS  PubMed  Google Scholar 

  22. Li Y, Ling H, Li W, Tan H (2005) Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7:165–173

    Article  PubMed  Google Scholar 

  23. Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2009) Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb Cell Fact 8:61

    Article  PubMed Central  PubMed  Google Scholar 

  24. Macdonald J (1960) Biosynthesis of valinomycin. Can J Microbiol 6:27–34

    Article  CAS  PubMed  Google Scholar 

  25. Madhusudhan KT, Hester KL, Friend V, Sokatch JR (1997) Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR. J Bacteriol 179:1992–1997

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Massey LK, Sokatch JR, Conrad RS (1976) Branched-chain amino acid catabolism in bacteria. Bacteriol Rev 40:42

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Mo S, Ban Y-H, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482

    Article  CAS  PubMed  Google Scholar 

  28. Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Park CN, Lee JM, Lee D, Kim BS (2008) Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. J Microbiol Biotechnol 18:880–884

    CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold spring harbor laboratory press, New York

  31. Schuhmann T, Grond S (2004) Biosynthetic investigations of the V-type ATPase inhibitors bafilomycin A1, B1 and concanamycin A. J Antibiot 57:655–661

    Article  CAS  PubMed  Google Scholar 

  32. Skinner DD, Morgenstern MR, Fedechko RW, Denoya CD (1995) Cloning and sequencing of a cluster of genes encoding branched-chain alpha-keto acid dehydrogenase from Streptomyces avermitilis and the production of a functional E1 [alpha beta] component in Escherichia coli. J Bacteriol 177:183–190

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J (2005) The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol 187:664–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Stirrett K, Denoya C, Westpheling J (2009) Branched-chain amino acid catabolism provides precursors for the Type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. J Ind Microbiol Biotechnol 36:129–137

    Article  CAS  PubMed  Google Scholar 

  35. Vaněk Z, Matějů J, Čurdová E (1991) Immunomodulators isolated from microorganisms. Folia Microbiol 36:99–111

    Article  Google Scholar 

  36. Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zähner H (1984) Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiot 37:110–117

    Article  CAS  PubMed  Google Scholar 

  37. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4:417–426

    CAS  PubMed  Google Scholar 

  38. Wilton JH, Hokanson GC, French JC (1985) PD 118,576: a new antitumor macrolide antibiotic. J Antibiot 38:1449–1452

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Fortman JL, Carlson JC, Yan J, Liu Y, Bai F, Guan W, Jia J, Matainaho T, Sherman DH (2013) Characterization of the Bafilomycin Biosynthetic gene cluster from Streptomyces lohii. ChemBioChem 14:301–306

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Research Foundation of Korea funded by the Korea government (Ministry of Science, ICT, and Future Planning) (Grant No. NRF-2014R1A2A2A01005461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Seok Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.W., Ng, B.G. & Kim, B.S. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression. J Ind Microbiol Biotechnol 42, 1507–1517 (2015). https://doi.org/10.1007/s10295-015-1679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1679-5

Keywords

Navigation