Skip to main content
Log in

Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium Seliberia carboxydohydrogena Z-1062

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The present study addresses growth parameters and physiological and biochemical characteristics of the aerobic CO-oxidizing carboxydobacterium Seliberia carboxydohydrogena Z-1062. Poly(3-hydroxybutyrate) yields were investigated in experiments with limiting concentrations of mineral nutrients (nitrogen or sulfur or nitrogen and sulfur) in batch culture of S. carboxydohydrogena Z-1062 grown on gas mixtures consisting of CO2, O2, H2, and CO. CO concentrations of 10, 20, and 30 % v/v did not affect polymer synthesis, whose content after 56-h cultivation under limiting concentrations of nitrogen and sulfur was 52.6–62.8 % of biomass weight at a productivity of 0.13–0.22 g/L h. The inhibitory effect of CO on cell concentration was revealed at CO concentration of 30 % v/v. That also caused a decrease in substrate (H2 and O2) use efficiency. Thus, this carboxydobacterium can be regarded as a potential producer of polyhydroxyalkanoates from industrial hydrogenous sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  2. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  3. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, Lee YF (2011) Synthesis of polyhydroxyalkanoates from palm oil and some new applications. Appl Microbiol Biotechnol 89:1373–1386. doi:10.1007/s00253-011-3098-5

    Article  CAS  PubMed  Google Scholar 

  4. Arcos-Hernandez MV, Pratt S, Laycock B, Johansson P, Werker A, Lant PA (2013) Waste activated sludge as biomass for production of commercial-grade polyhydroxyalkanoates (PHA). Waste Biomass Valorization 4:117–127. doi:10.1007/s12649-012-9165-2

    Article  CAS  Google Scholar 

  5. Nikodinovic-Runic J, Guzik M, Kenny ST, Babu R, Werker A, O’Connor KE (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoates) production using bacteria. Adv Appl Microbiol 84:141–200. doi:10.1016/B978-0-12-407673-0.00004-7

    Google Scholar 

  6. Durner R, Witholt B, Egli T (2000) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl Environ Microbiol 66:3408–3422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lee IY, Kim CH, Yeon BK, Hong WK, Choi ES, Rhee SK, Park YH, Sung DH, Baek WH (1997) High production of d-β-hydroxyisobutyric acid from methacrylic acid by Candida rugosa and its mutant. Bioprocess Eng 16:247–252

    Article  CAS  Google Scholar 

  8. Maskow T, Babel W (2000) Calorimetrically recognized maximum yield of poly-3-hydroxybutyrate (PHB) continuously synthesized from toxic substrates. J Biotechnol 77:247–253

    Article  CAS  PubMed  Google Scholar 

  9. Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424. doi:10.1007/s00253-012-4649-0

    Article  CAS  PubMed  Google Scholar 

  10. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen G-Q, Steinbüchel A (eds) Plastics from bacteria—natural functions and applications. Springer, Heidelberg, pp 86–114

  11. Tanaka K, Ishizaki A, Kanamuru T, Kawano T (1995) Production of poly(d-3-hydroxybutyrate) rom CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    Article  CAS  PubMed  Google Scholar 

  12. Volova TG (2009) Hydrogen-based biosynthesis. Nova Science Publisher Inc., New York

    Google Scholar 

  13. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  14. Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-d-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6–12. doi:10.1007/s002530100775

    Article  CAS  PubMed  Google Scholar 

  15. Volova T, Kiselev E, Shishatskaya E, Zhila N, Boyandin A, Syrvacheva D, Vinogradova O, Kalacheva G, Vasiliev A, Peterson I (2013) Cell growth and PHA accumulation from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222. doi:10.1016/j.biortech.2013.07.070

    Article  CAS  PubMed  Google Scholar 

  16. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-β-hydroxyalkanoate. Biotechnol Bioeng 97:279–286. doi:10.1002/bit.21226

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbial Biotechnol 92:1161–1169. doi:10.1007/s00253-011-3420-2

    Article  CAS  Google Scholar 

  18. Przybylski D, Rohwerder T, Dilßner C, Maskow T, Harms H, Müller RH (2015) Exploiting mixtures of H2, CO2, and O2 or improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145. doi:10.1007/s00253-014-6266-6

    Article  CAS  PubMed  Google Scholar 

  19. Zavarzin GA (1978) Hydrogen bacteria and carboxydobacteria. Nauka, Moscow (In Russian)

    Google Scholar 

  20. Gruzinsky IV, Gogotov IN, Bechina EM, Semenov YV (1977) Dehydrogenase activity of hydrogen-oxidizing bacteria Alcaligenes eutrophus. Microbiology (Mikrobiologiya) 46:625–630

  21. Volova TG, Kalacheva GS, Altukhova OV (2002) Autotorophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide. Appl Microbiol Biotechnol 58:675–678. doi:10.1007/s00253-002-0941-8

    Article  CAS  PubMed  Google Scholar 

  22. Volova TG, Yangolov OV, Kahanov YG, Konovalov NM (1996) Sposob kultivirovaniya vodorodokislyayuschih bacterii (A technique of cultivation of hydrogen-oxidizing bacteria). RF Patent No 2051962. (In Russian)

  23. Volova TG, Kalacheva GS, Gitelson II, Kuznecov BN, Schipko AM, Shabanov VF (2003) Sposob polucheniya polimera—β-oksimaslyanoi kisloti (A technique of producing a polymer—β-oxybutyric acid). RF Patent No 2207375. (In Russian)

  24. Volova TG, Shishatskaya EI (2012) Shtamm bakterii VKPM B-10646—produtsent poligidroksialkanoatov I sposob ikh polucheniya (Bacterial strain VKPM B-10646—a producer of polyhydroxyalkanoates and a method of their production). RF Patent No. 2439143. (In Russian)

  25. Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann Rev Microbiol 37:277–310

    Article  CAS  Google Scholar 

  26. Volova TG, Terskov IA, Trubachev IN, Sidko FY (1982) Growth and biochemical composition of carboxydobacteria. Izvestia Akademii Nauk SSSR. Seriya biologicheskaya 923–931. (In Russian)

  27. Volova TG, Kalacheva GS, Kasaeva GE, Tereshkova GM (1986) The influence of the conditions of the gas supply on the growth and metabolism of carboxydobacteria. Microbiology (Mikrobiologiya) 55:938–943 (In Russian)

    CAS  Google Scholar 

  28. Volova TG, Guseinov OA, Kalacheva GS, Medvedeva SE, Puzyr AP (1993) Effect of monoxide on metabolism and ultrastructure af carboxydobacteria. World J Microbiol Biotechnol 9:160–163

    Article  CAS  PubMed  Google Scholar 

  29. Volova TG, Kalacheva GS, Trubachev IN, Filippova VK (1988) Study of the physiological and biochemical characteristics of carboxydobacteria under nutrient limitation. Microbiology (Mikrobiologiya) 57:61–64 (In Russian)

    CAS  Google Scholar 

  30. Volova TG, Kalacheva GS, Konstantinova VM (1994) Accumulation of polyoxybutyrate by aerobic CO-oxidizing bacteria Seliberia carboxydohydrogena. Microbiology (Mikrobiologiya) 63:211–216 (In Russian)

    CAS  Google Scholar 

  31. Volova TG, Kalacheva GS, Plotnikov VF (1998) Biosynthesis of heteropolymeric polyhydroxyalkanoates by chemolithoautotrophic bacteria. Microbiology (Mikrobiologiya) 67:420–424

    CAS  Google Scholar 

  32. Spirin AS (1958) Spectrophotometric determination of the total amount of nucleic acids. Biochemistry (Biokimiya) 23:656–660 (In Russian)

    CAS  Google Scholar 

  33. Kalacheva GS, Volova TG (2007) Fatty acid composition of Wautersia eutropha lipids under conditions of active polyhydroxyalkanoates synthesis. Microbiology (Mikrobiologiya) 76:608–614. doi:10.1134/s00262611707050049

    CAS  Google Scholar 

  34. Volova TG, Kalacheva GS, Kasaeva GE, Tereshkova GM (1987) The influence of the physical and chemical conditions of the medium on the growth and biochemical composition of carboxydobacteria. Microbiology (Mikrobiologiya) 56:973–978 (In Russian)

    CAS  Google Scholar 

  35. Volova TG, Zhila NO, Kalacheva GS, Brigham CJ, Sinskey AJ (2013) Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological-biochemical properties and growth of Ralstonia eutropha. Res Microbiol 164:164–171. doi:10.1016/j.resmic.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  36. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Res 38:2434–2446. doi:10.1039/b812677c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project No 01201351505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Volova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volova, T., Zhila, N. & Shishatskaya, E. Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium Seliberia carboxydohydrogena Z-1062. J Ind Microbiol Biotechnol 42, 1377–1387 (2015). https://doi.org/10.1007/s10295-015-1659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1659-9

Keywords

Navigation