Skip to main content

Advertisement

Log in

The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The production of biogas (methane) by an anaerobic digestion is an important facet to renewable energy, but is subject to instability due to the sensitivity of strictly anaerobic methanogenic archaea (methanogens) to environmental perturbations, such as oxygen. An understanding of the oxidant-sensing mechanisms used by methanogens may lead to the development of more oxidant tolerant (i.e., stable) methanogen strains. MsvR is a redox-sensitive transcriptional regulator that is found exclusively in methanogens. We show here that oxidation of MsvR from Methanosarcina acetivorans (MaMsvR) with hydrogen peroxide oxidizes cysteine thiols, which inactivates MaMsvR binding to its own promoter (P msvR ). Incubation of oxidized MaMsvR with the M. acetivorans thioredoxin system (NADPH, MaTrxR, and MaTrx7) results in reduction of the cysteines back to thiols and activation of P msvR binding. These data confirm that cysteines are critical for the thiol-disulfide regulation of P msvR binding by MaMsvR and support a role for the M. acetivorans thioredoxin system in the in vivo activation of MaMsvR. The results support the feasibility of using MaMsvR and P msvR , along with the Methanosarcina genetic system, to design methanogen strains with oxidant-regulated gene expression systems, which may aid in stabilizing anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6(4):847–862. doi:10.1038/ismej.2011.141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6(5):e20453. doi:10.1371/journal.pone.0020453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288(37):26489–26496. doi:10.1074/jbc.R113.462929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. doi:10.1016/j.biortech.2012.02.079

    Article  PubMed  Google Scholar 

  5. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Bruggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4(4):453–461

    CAS  PubMed  Google Scholar 

  6. Dubbs JM, Mongkolsuk S (2012) Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 194(20):5495–5503. doi:10.1128/JB.00304-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I archaea—the key methane producers in the rice rhizosphere. Science 313(5785):370–372

    Article  CAS  PubMed  Google Scholar 

  8. Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356. doi:10.1146/annurev.micro.55.1.333

    Article  CAS  PubMed  Google Scholar 

  9. Ferry JG (2008) Acetate-based methane production. In: Wall J, Harwood CS, Demain A (eds) Bioenergy. ASM press, Washington, pp 155–170

    Google Scholar 

  10. Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115

    Article  CAS  Google Scholar 

  11. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12(4):532–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guss AM, Rother M, Zhang JK, Kulkarni G, Metcalf WW (2008) New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2(3):193–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Imlay JA (2002) How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153

    Article  CAS  PubMed  Google Scholar 

  14. Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59(4):1073–1082

    Article  PubMed  Google Scholar 

  15. Isom CE, Turner JL, Lessner DJ, Karr EA (2013) Redox-sensitive DNA binding by homodimeric Methanosarcina acetivorans MsvR is modulated by cysteine residues. BMC Microbiol 13:163. doi:10.1186/1471-2180-13-163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jennings ME, Schaff CW, Horne AJ, Lessner FH, Lessner DJ (2014) Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen. Microbiology 160(Pt 2):270–278. doi:10.1099/mic.0.070763-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Karr EA (2010) The methanogen-specific transcription factor MsvR regulates the fpaA-rlp-rub oxidative stress operon adjacent to msvR in Methanothermobacter thermautotrophicus. J Bacteriol 192(22):5914–5922. doi:10.1128/JB.00816-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. System Appl Microbiol 4:305–312

    Article  CAS  Google Scholar 

  19. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188(22):7922–7931. doi:10.1128/JB.00810-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. McCarver AC, Lessner DJ (2014) Molecular characterization of the thioredoxin system from Methanosarcina acetivorans. FEBS J 281(20):4598–4611. doi:10.1111/febs.12964

    Article  CAS  PubMed  Google Scholar 

  21. McFarlan SC, Terrell CA, Hogenkamp HP (1992) The purification, characterization, and primary structure of a small redox protein from Methanobacterium thermoautotrophicum, an archaebacterium. J Biol Chem 267(15):10561–10569

    CAS  PubMed  Google Scholar 

  22. Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367. doi:10.1146/annurev-genet-102108-134201

    Article  CAS  PubMed  Google Scholar 

  23. Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  CAS  PubMed  Google Scholar 

  24. Susanti D, Wong JH, Vensel WH, Loganathan U, DeSantis R, Schmitz RA, Balsera M, Buchanan BB, Mukhopadhyay B (2014) Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii. Proc Natl Acad Sci USA 111(7):2608–2613. doi:10.1073/pnas.1324240111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591. doi:10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  26. Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279(5357):1718–1721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant number P20 GM103640 (EAK) and P30 GM103450 (DJL) from the National Institute of General Medical Sciences of the National Institutes of Health, NSF grant number MCB1121292 (DJL), NASA Exobiology grant number NNX12AR60G (DJL), and the Arkansas Biosciences Institute (DJL), the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth A. Karr or Daniel J. Lessner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheehan, R., McCarver, A.C., Isom, C.E. et al. The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR. J Ind Microbiol Biotechnol 42, 965–969 (2015). https://doi.org/10.1007/s10295-015-1592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1592-y

Keywords

Navigation