Skip to main content
Log in

Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The recently engineered reversal of the β-oxidation cycle has been proposed as a potential platform for the efficient synthesis of longer chain (C ≥ 4) fuels and chemicals. Here, we demonstrate the utility of this platform for the synthesis of medium-chain length (C6–C10) products through the manipulation of key components of the pathway. Deletion of endogenous thioesterases provided a clean background in which the expression of various thiolase and termination components, along with required core enzymes, resulted in the ability to alter the chain length distribution and functionality of target products. This approach enabled the synthesis of medium-chain length carboxylic acids and primary alcohols from glycerol, a low-value feedstock. The use of BktB as the thiolase component with thioesterase TesA’ as the termination enzyme enabled the synthesis of about 1.3 g/L C6–C10 saturated carboxylic acids. Tailoring of product formation to primary alcohol synthesis was achieved with the use of various acyl-CoA reductases. The combination of AtoB and FadA as the thiolase components with the alcohol-forming acyl-CoA reductase Maqu2507 from M. aquaeolei resulted in the synthesis of nearly 0.3 g/L C6–C10 alcohols. These results further demonstrate the versatile nature of a β-oxidation reversal, and highlight several key aspects and control points that can be further manipulated to fine-tune the synthesis of various fuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchholz K, Collins J (2013) The roots-a short history of industrial microbiology and biotechnology. Appl Microbiol Biotechnol 97:3747–3762

    Article  CAS  PubMed  Google Scholar 

  2. Cho HS, Cronan JE (1993) Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268:9238–9245

    CAS  PubMed  Google Scholar 

  3. Cintolesi A, Clomburg JM, Gonzalez R (2014) In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C ≥ 4) products. Metab Eng 23:100–115

    Article  CAS  PubMed  Google Scholar 

  4. Clomburg JM, Blankschien MD, Vick JE, Chou A, Kim S, Gonzalez R (2014) Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng. doi:10.1016/j.ymben.2015.01.007

  5. Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 1:541–554

    Article  CAS  PubMed  Google Scholar 

  6. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359

    Article  CAS  PubMed  Google Scholar 

  7. Feng Y, Cronan JE (2009) A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol 191:6320–6328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fischer B, Boutserin S, Mazon H, Collin S, Branlant G, Gruez A et al (2013) Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme a activation upon binding. Chem-Biol Interact 202:70–77

    Article  CAS  PubMed  Google Scholar 

  9. Fontaine L, Meynial-Salles I, Girbal L, Yang XH, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG (2012) Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid beta-oxidation pathway. Biotechnol Lett 34:463–469

    Article  CAS  PubMed  Google Scholar 

  11. Gully D, Bouveret E (2006) A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli. Proteomics 6:282–293

    Article  CAS  PubMed  Google Scholar 

  12. Hofvander P, Doan TTP, Hamberg M (2011) A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett 585:3538–3543

    Article  CAS  PubMed  Google Scholar 

  13. Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp strain M-1: Ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68:1192–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW et al (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109:2437–2459

    Article  CAS  PubMed  Google Scholar 

  15. Kang YS, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM et al (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Latham JA, Chen DQ, Allen KN, Dunaway-Mariano D (2014) Divergence of substrate specificity and function in the Escherichia coli hotdog-fold thioesterase paralogs YdiI and YbdB. Biochemistry 53:4775–4787

    Article  CAS  PubMed  Google Scholar 

  17. Lenneman EM, Ohlert JM, Palani NP, Barney BM (2013) Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway. Appl Environ Microbiol 79:7055–7062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lian J, Zhao H (2014) Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol. doi:10.1021/sb500243c

    PubMed  Google Scholar 

  19. Liu R, Zhu FY, Lu L, Fu AS, Lu JK, Deng ZX et al (2014) Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coil. Metab Eng 22:10–21

    Article  CAS  PubMed  Google Scholar 

  20. Machado HB, Dekishima Y, Luo H, Lan EI, Liao JC (2012) A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 14:504–511

    Article  CAS  PubMed  Google Scholar 

  21. Martin CH, Dhamankar H, Tseng HC, Sheppard MJ, Reisch CR, Prather KLJ (2013) A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone. Nat Commun 4:9

    Google Scholar 

  22. Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R (2013) Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact 12:7–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  24. Neidhardt FC, Bloch PL, Smith DF (1974) Culture Medium for Enterobacteria. J Bacteriol 119:736–747

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Nie L, Ren Y, Janakiraman A, Smith S, Schulz H (2008) A novel paradigm of fatty acid β-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli. Biochemistry 47:9618–9626

    Article  CAS  PubMed  Google Scholar 

  26. Pick A, Ruhmann B, Schmid J, Sieber V (2013) Novel CAD-like enzymes from Escherichia coli K-12 as additional tools in chemical production. Appl Microbiol Biotechnol 97:5815–5824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme a reductase. J Bacteriol 179:2969–2975

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Riley M, Abe T, Arnaud MB, Berlyn MKB, Blattner FR, Chaudhuri RR et al (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial Biosynthesis of Alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  32. Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908

    Article  CAS  PubMed  Google Scholar 

  33. Toth J, Ismaiel AA, Chen JS (1999) The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum. Appl Environ Microbiol 65:4973–4980

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Vick JE, Clomburg JM, Blankschien MD, Chou A, Kim S, Gonzalez R (2015) FabI and other bacterial enoyl-acyl carrier protein reductases (ENR) support efficient operation of a functional reversal of the β-oxidation cycle. Appl Environ Microbiol 81 doi:10.1128/AEM.03521-14

  35. Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 50:10550–10558

    Article  CAS  PubMed  Google Scholar 

  36. Zhu HL, Gonzalez R, Bobik TA (2011) Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli. Appl Environ Microbiol 77:6441–6450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhuang Q, Wang Q, Liang Q, Qi Q (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86

    Article  CAS  PubMed  Google Scholar 

  38. Zhuang ZH, Song F, Zhao H, Li L, Cao J, Eisenstein E et al (2008) Divergence of function in the hot dog fold enzyme superfamily: the bacterial thioesterase YciA. Biochemistry 47:2789–2796

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the U.S. National Science Foundation (CBET-1134541, CBET-1067565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gonzalez.

Additional information

Special Issue: Metabolic Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Clomburg, J.M. & Gonzalez, R. Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli . J Ind Microbiol Biotechnol 42, 465–475 (2015). https://doi.org/10.1007/s10295-015-1589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1589-6

Keywords

Navigation