Skip to main content
Log in

Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In Gluconobacter oxydans cultivations on glucose, CaCO3 is typically used as pH-buffer. This buffer, however, has disadvantages: suspended CaCO3 particles make the medium turbid, thereby, obstructing analysis of microbial growth via optical density and scattered light. Upon searching for alternative soluble pH-buffers, bacterial growth and productivity was inhibited most probably due to osmotic stress. Thus, this study investigates in detail the osmotic sensitivity of G. oxydans ATCC 621H and DSM 3504 using the Respiratory Activity MOnitoring System. The tested soluble pH-buffers and other salts attained osmolalities of 0.32–1.19 osmol kg−1. This study shows that G. oxydans ATCC 621H and DSM 3504 respond quite sensitively to increased osmolality in comparison to other microbial strains of industrial interest. Osmolality values of >0.5 osmol kg−1 should not be exceeded to avoid inhibition of growth and product formation. This osmolality threshold needs to be considered when working with soluble pH-buffers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O (1981) Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett 130(2):179–183. doi:10.1016/0014-5793(81)81114-3

    Article  CAS  PubMed  Google Scholar 

  2. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162. doi:10.1016/S1369-703X(00)00116-9

    Article  CAS  PubMed  Google Scholar 

  3. Anderlei T, Mrotzek C, Bartsch S, Amoabediny G, Peter CP, Büchs J (2007) New method to determine the mass transfer resistance of sterile closures for shaken bioreactors. Biotechnol Bioeng 98(5):999–1007. doi:10.1002/bit.21490

    Article  CAS  PubMed  Google Scholar 

  4. Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17(3):187–194. doi:10.1016/S1369-703x(03)00181-5

    Article  CAS  Google Scholar 

  5. Asai T (1968) Acetic Acid Bacteria: Classification and Biochemical Activities. University of Tokyo Press, Tokyo

    Google Scholar 

  6. Beschkov V, Velizarov S, Peeva L (1995) Some kinetic aspects and modeling of biotransformation of d-glucose to keto-d-gluconates. Bioprocess Eng 13:301–305. doi:10.1007/BF00369561

    Article  CAS  Google Scholar 

  7. Brown AD (1990) Microbial water stress physiology: principles and perspectives. Wiley, Chichester

    Google Scholar 

  8. Brown DA, Cook RA (1981) Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Biochemistry 20(9):2503–2512. doi:10.1021/bi00512a022

    Article  CAS  PubMed  Google Scholar 

  9. Buchenauer A, Hofmann MC, Funke M, Büchs J, Mokwa W, Schnakenberg U (2009) Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens Bioelectron 24(5):1411–1416. doi:10.1016/j.bios.2008.08.043

    Article  CAS  PubMed  Google Scholar 

  10. Davey KR (1989) A predictive model for combined temperature and water activity on microbial-growth during the growth-phase. J Appl Bacteriol 67(5):483–488. doi:10.1111/j.1365-2672.1989.tb02519.x

    Article  CAS  PubMed  Google Scholar 

  11. Davey KR (1991) Applicability of the Davey (Linear Arrhenius) predictive model to the lag phase of microbial-growth. J Appl Bacteriol 70(3):253–257. doi:10.1111/j.1365-2672.1991.tb02933.x

    Article  Google Scholar 

  12. Duggan PF (1977) An enzyme system requiring magnesium, calcium and potassium ions. Proc R Ir Acad B 77(19–47):449–455

    CAS  PubMed  Google Scholar 

  13. Ellis KJ, Morrison JF (1982) Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87:405–426. doi:10.1016/S0076-6879(82)87025-0

    Article  CAS  PubMed  Google Scholar 

  14. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J (2010) Microfluidic BioLector-Microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497–505. doi:10.1002/Bit.22825

    Article  CAS  PubMed  Google Scholar 

  15. Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J (2014) Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metab Eng 24:30–37. doi:10.1016/j.ymben.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Good NE, Izawa S (1972) Hydrogen ion buffers. Methods Enzymol 24:53–68. doi:10.1016/0076-6879(72)24054-X

    Article  CAS  PubMed  Google Scholar 

  17. Greenfield S, Claus G (1972) Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 112(3):1295–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Griffin DM (1981) Water and micobial stress. Adv Microb Ecol 5:91–136. doi:10.1007/978-1-4615-8306-6_3

    Article  CAS  Google Scholar 

  19. Guillouet S, Engasser JM (1995) Sodium and proline accumulation in Corynebacterium glutamicum as a response to an osmotic saline upshock. Appl Microbiol Biotechnol 43(2):315–320. doi:10.1007/BF00172831

    Article  CAS  Google Scholar 

  20. Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3(3):445–456

    CAS  PubMed  Google Scholar 

  21. Hommel R, Ahnert P (2000) Gluconobacter. Encyclopedia of food microbiology. Academic Press, London

    Google Scholar 

  22. Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J (2006) Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 95:433–445. doi:10.1002/bit.21012

    Article  CAS  PubMed  Google Scholar 

  23. Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as “better” buffers covering the range of pH 3-11. Temperature dependence of their acid dissociation constants. Anal Chem 71(15):3140–3144. doi:10.1021/ac9902594

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Wittmann C, Heinzle E (2004) Review: minibioreactors. Biotechnol Lett 26(1):1–10. doi:10.1023/b:bile.0000009469.69116.03

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenthaler FW (2006) The key sugars of biomass: Availability, present non-food applications and potential industrial development lines. Biorefineries, biobased industrial processes and products. Wiley-VHC, Weinheim

    Google Scholar 

  26. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301. doi:10.1016/S0065-2911(08)60181-2

    Article  CAS  PubMed  Google Scholar 

  27. Mille Y, Beney L, Gervais P (2005) Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol Bioeng 92(4):479–484. doi:10.1002/bit.20631

    Article  CAS  PubMed  Google Scholar 

  28. Mori H, Kobayashi T, Shimizu S (1981) High density production of sorbose from sorbitol by fed-batch culture with DO-stat. J Chem Eng Jpn 14(1):65–70. doi:10.1252/jcej.14.65

    Article  CAS  Google Scholar 

  29. Nobel PS (1983) Introduction to biophysical plant physiology, 2 edn. San Fancisco

  30. Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose containing media. Arch Microbiol 121(3):283–290. doi:10.1007/BF00425069

    Article  CAS  Google Scholar 

  31. Olijve W, Kok JJ (1979) Analysis of the growth of Gluconobacter oxydans in chemostat cultures. Arch Microbiol 121(3):291–297. doi:10.1007/BF00425070

    Article  CAS  Google Scholar 

  32. Peña C, Galindo E, Büchs J (2011) The viscosifying power, degree of acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Process Biochem 46(1):290–297. doi:10.1016/j.procbio.2010.08.025

    Article  Google Scholar 

  33. Po HN, Senozan NM (2001) The Henderson-Hasselbalch equation: its history and limitations. J Chem Educ 78(11):1499. doi:10.1021/ed078p1499

    Article  CAS  Google Scholar 

  34. Prior BA (1978) Effect of water activity on growth and respiration of Pseudomonas fluorescens. J Appl Bacteriol 44(1):97–106. doi:10.1111/j.1365-2672.1978.tb00780.x

    Article  CAS  PubMed  Google Scholar 

  35. Raspor P, Goranovic D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28(2):101–124. doi:10.1080/07388550802046749

    Article  CAS  PubMed  Google Scholar 

  36. Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ (1998) Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23(4):143–148. doi:10.1016/S0968-0004(98)01196-7

    Article  CAS  PubMed  Google Scholar 

  37. Richhardt J, Luchterhand B, Bringer S, Büchs J, Bott M (2013) Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. J Bacteriol 195(18):4210–4220. doi:10.1128/JB.00470-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Büchs J (2011) Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25. doi:10.1186/1472-6750-11-25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Seletzky JM, Noack U, Hahn S, Knoll A, Amoabediny G, Büchs J (2007) An experimental comparison of respiration measuring techniques in fermenters and shake flasks: exhaust gas analyzer vs. RAMOS device vs. respirometer. J Ind Microbiol Biotechnol 34(2):123–130. doi:10.1007/s10295-006-0176-2

    Article  CAS  PubMed  Google Scholar 

  40. Shinagawa E, Ameyama M (1982) 2-Keto-d-gluconate dehydrogenase from Gluconobacter melanogenus, membrane-bound. Methods Enzymol

  41. Shinagawa E, Matsushita K, Adachi O, Ameyama M (1981) Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 45(5):1079–1085. doi:10.1271/bbb1961.45.1079

    Article  CAS  Google Scholar 

  42. Shinagawa E, Matsushita K, Adachi O, Ameyama M (1984) D-gluconate dehydrogenase, 2-keto-d-gluconate yielding, from Gluconobacter dioxyacetonicus—purification and characterization. Agric Biol Chem 48(6):1517–1522

    Article  CAS  Google Scholar 

  43. Sievers M, Swings J, Garrity G, Brenner D, Krieg N, Staley J (2005) The genus gluconobacter. Springer, New York

    Google Scholar 

  44. Silberbach M, Maier B, Zimmermann M, Büchs J (2003) Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile. Appl Microbiol Biotechnol 62(1):92–98. doi:10.1007/s00253-003-1222-x

    Article  CAS  PubMed  Google Scholar 

  45. Sonoyama T, Tani H, Matsuda K, Kageyama B, Tanimoto M, Kobayashi K, Yagi S, Kyotani H, Mitsushima K (1982) Production of 2-keto-l-gulonic acid from d-glucose by two-stage fermentation. Appl Environ Microbiol 43(5):1064–1069

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Sterne R, Zentmyer G, Bingham F (1976) The effect of osmotic potential and specific ions on growth of Phytophthora cinnamomi. GROWTH 1(1):5–10

    Google Scholar 

  47. Weenk G, Olijve W, Harder W (1984) Ketogluconate formation by Gluconobacter species. Appl Biochem Biotechnol 20(6):400–405. doi:10.1007/BF00261942

    CAS  Google Scholar 

  48. Weuster-Botz D (2005) Parallel reactor systems for bioprocess development. Adv Biochem Eng Biotechnol 92:125–143. doi:10.1007/b98916

    CAS  PubMed  Google Scholar 

  49. Weuster-Botz D, Altenbach-Rehm J, Arnold M (2001) Parallel substrate feeding and pH-control in shaking-flasks. Biochem Eng J 7(2):163–170. doi:10.1016/S1369-703X(00)00117-0

    Article  CAS  PubMed  Google Scholar 

  50. Woods D, Duniway J (1986) Some effects of water potential on growth, turgor, and respiration of Phytophthora cryptogea and Fusarium moniliforme. Phytopathology 76(11):1248–1254

    Article  Google Scholar 

  51. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100(9):2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  CAS  PubMed  Google Scholar 

  52. Zou X, Guo X, Sun M (2009) pH control strategy in a shaken mini bioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity. Bioprocess Biosyst Eng 32(2):277–281. doi:10.1007/s00449-008-0241-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed within the research network “Genomik Transfer”, funded by the Federal Ministry of Research and Education, Germany (FKZ 0315632B). The authors wish to thank Stephanie Bringer and Janine Richhardt from the Institute of Bio- and Geosciences at the Research Center Jülich (Germany) as well was Wolfgang Liebl, Armin Ehrenreich and David Kostner from the Department of Microbiology at the Technological University Munich (Germany) for providing the G. oxydans strains ATCC 621H and DSM 3504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Luchterhand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchterhand, B., Fischöder, T., Grimm, A.R. et al. Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers. J Ind Microbiol Biotechnol 42, 585–600 (2015). https://doi.org/10.1007/s10295-015-1588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1588-7

Keywords

Navigation