Skip to main content
Log in

Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antczak MS, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renew Energy 34:1185–1194

    Article  Google Scholar 

  2. Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalyst immobilized within biomass support particles for biodiesel production. J Mol Catal B Enzym 17:157–165

    Article  CAS  Google Scholar 

  3. Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486–493

    Article  CAS  PubMed  Google Scholar 

  4. Batistella L, Lerin LA, Brugnerotto P, Danielli AJ, Trentin CM, Popiolski A, Treichel H, Oliveira V, Oliveira D (2012) Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrason Sonochem 19:452–458

    Article  CAS  PubMed  Google Scholar 

  5. Blanch HW, Clark DS (1997) Biochem Eng, 2nd edn. CRC Press, New York

    Google Scholar 

  6. Blanco RM, Terreros P, Fernández-Perez M, Otero C, Díaz-González G (2004) Functionalization of mesoporous silica for lipase immobilization: characterization of the support and the catalysts. J Mol Catal B Enzym 30:83–93

    Article  CAS  Google Scholar 

  7. Blanco RM, Terreros P, Muñoz N, Serra E (2007) Ethanol improves lipases immobilization on a hydrophobic support. J Mol Catal B Enzym 47:13–20

    Article  CAS  Google Scholar 

  8. Bosley JA, Peilow AD (1997) Immobilization of lipases on porous polypropylene: reduction in esterification efficiency at low loading. J Am Oil Chem Soc 74:107–111

    Article  CAS  Google Scholar 

  9. Chang HM, Liao HF, Lee CC, Shieh CJ (2005) Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. J Chem Technol Biotechnol 80:307–312

    Article  CAS  Google Scholar 

  10. Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    Article  CAS  PubMed  Google Scholar 

  11. Coats AW, Redfern JP (1963) Thermogravimetric analysis. A review. Analyst 88:906–924

    Article  CAS  Google Scholar 

  12. Da Rós PCM, Silva WC, Grabauskas D, Perez VH, Castro HF (2014) Biodiesel from babassu oil: characterization of the product obtained by enzymatic route accelerated by microwave irradiation. Ind Crop Prod 52:313–320

    Article  Google Scholar 

  13. Dalla-Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2008) Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. J Supercrit Fluids 47:49–53

    Article  CAS  Google Scholar 

  14. Du W, Xu YY, Zeng J, Liu DH (2004) Novozym 435-catalysed transesterification of crude soya bean oil for biodiesel production in a solvent-free medium. Biotechnol Appl Biochem 40:187–190

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Lafuente R, Armisen P, Sabuquillo P, Fernández-Lorente G, Guisán JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids 93:185–197

    Article  PubMed  Google Scholar 

  16. Fernández-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212

    Article  Google Scholar 

  17. Fernández-Lorente G, Palomo JM, Fuentes M, Mateo C, Guisán JM, Fernández-Lafuente R (2003) Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Biotechnol Bioeng 82:232–237

    Article  PubMed  Google Scholar 

  18. Freitas L, Da Rós PCM, Santos JC, Castro HF (2009) An integrated approach to produce biodiesel and monoglycerides by enzymatic interesterification of babassu oil (Orbinya sp). Process Biochem 44:1068–1074

    Article  CAS  Google Scholar 

  19. Hartmeier W (1988) Immobilized biocatalysts.An Introduction. Springer-Verlag, Berlin

    Book  Google Scholar 

  20. José C, Austic GB, Bonetto RD, Burton RM, Briand LE (2013) Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal Today 213:73–80

    Article  Google Scholar 

  21. Kennedy JF (1987) Enzyme technology. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7a. VCH, Weinheim

    Google Scholar 

  22. Lee M, Lee J, Lee D, Cho J, Kim S, Park C (2011) Improvement of enzymatic biodiesel production by controlled substrate feeding using silica gel in solvent free system. Enzym Microb Technol 49:402–406

    Article  CAS  Google Scholar 

  23. Li Q, Zheng J, Yan Y (2010) Biodiesel preparation catalyzed by compound-lipase in co-solvent. Fuel Process Technol 91:1229–1234

    Article  CAS  Google Scholar 

  24. Li Y, Gao F, Wei W, Qu JB, Ma GH, Zhou W (2010) Pore size of macroporous polystyrene microspheres affects lipase immobilization. J Mol Catal B Enzym 66:182–189

    Article  CAS  Google Scholar 

  25. Lima LN, Aragon CC, Mateo C, Palomo JM, Giordano RLC, Tardioli PW, Guisán JM, Fernández-Lorente G (2013) Immobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachment. Process Biochem 48:118–123

    Article  Google Scholar 

  26. Liu J, Huang J, Chen F (2011) Microalgae as feedstocks for biodiesel production. In: Stoytcheva M, Montero G (eds) Biodiesel—feedstocks and processing technologies. InTech, Rijeka, pp 133–160

    Google Scholar 

  27. Ller RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley & Sons Inc, United States

    Google Scholar 

  28. Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  29. Mendes AA, Castro HF, Rodrigues DS, Adriano WS, Tardioli PW, Mammarella EJ, Giordano RC, Giordano RLC (2011) Multipoint covalent immobilization of lipase on chitosan hydrid-hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol 38:1055–1066

    Article  CAS  PubMed  Google Scholar 

  30. Mendes AA, Giordano RC, Giordano RLC, Castro HF (2011) Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis. J Mol Catal B Enzym 68:109–115

    Article  CAS  Google Scholar 

  31. Mendes AA, Oliveira PC, Castro HF (2012) Properties and biotechnological applications of porcine pancreatic lipase. J Mol Catal B Enzym 78:119–134

    Article  CAS  Google Scholar 

  32. Mendes AA, Oliveira PC, Vélez AM, Giordano RC, Giordano RLC, Castro HF (2012) Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int J Biol Macromol 50:503–511

    Article  CAS  PubMed  Google Scholar 

  33. Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195

    Article  CAS  Google Scholar 

  34. Palomo JM, Munoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM (2002) Interfacial adsorption of lipases on very hydrophobic support (Octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzym 19–20:279–286

    Article  Google Scholar 

  35. Palomo JM, Fuentes M, Fernández-Lorente G, Mateo C, Guisán JM, Fernández-Lafuente R (2003) General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules 4:1–6

    Article  CAS  PubMed  Google Scholar 

  36. Palomo JM, Ortiz C, Fernández-Lorente G, Fontes M, Guisán JM, Fernández-Lafuente R (2005) Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzym Microb Tehcnol 36:447–454

    Article  CAS  Google Scholar 

  37. Paula AV, Urioste D, Santos JC, Castro HF (2007) Porcine pancreatic lipase immobilized on polysiloxane-polyvinyl alcohol hybrid matrix: Catalytic properties and feasibility to mediate synthesis of surfactants and biodiesel. J Chem Technol Biotechnol 82:281–288

    Article  CAS  Google Scholar 

  38. Reetz MT, Zonta A, Vijayakrishnan V, Schimossek K (1998) Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts. J Mol Catal A: Chem 134:251–258

    Article  CAS  Google Scholar 

  39. Rodrigues RC, Ayub MAZ (2011) Effects of combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688

    Article  CAS  Google Scholar 

  40. Rodrigues RC, Berenguer-Murcia A, Fernández-Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353:2216–2238

    Article  CAS  Google Scholar 

  41. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigues RC, Pessela BCC, Volpato G, Fernádez-Lafuente R, Guisán JM, Ayub MAZ (2010) Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized-stabilized lipase from Thermomyces lanuginosus. Process Biochem 45:1268–1273

    Article  CAS  Google Scholar 

  43. Rosset IG, Tavares MCH, Assaf EM, Porto ALM (2011) Catalytic ethanolysis of soybean oil with immobilized lipase from Candida antarctica and H1NMR and GC quantification of the ethyl esters (biodiesel) produced. Appl Catal A: Gen 392:136–142

    Article  CAS  Google Scholar 

  44. Sadana A, Henley JP (1987) Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng 30:717–723

    Article  CAS  PubMed  Google Scholar 

  45. Salis A, Bhattacharyya MS, Monduzzi M, Solinas V (2009) Role of the support surface on the loading and the activity of Pseudomonas fluorescens lipase used for biodiesel synthesis. J Mol Catal B Enzym 57:262–269

    Article  CAS  Google Scholar 

  46. Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Fukuda H (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Biosci Bioeng 90:180–183

    Article  CAS  PubMed  Google Scholar 

  47. Sangaletti N, Cea M, Regitano-D’Arce MAB, Vieira TMFS, Navia R (2013) Enzymatic transesterification of soybean ethanolic miscella for biodiesel production. Chem Technol Biotechnol 88:2098–2106

    CAS  Google Scholar 

  48. Schmid RD, Verger R (1998) Lipases: interfacial enzyme with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  49. Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A (1997) The open conformation of a Pseudomonas lipase. Struct 5:187–202

    Article  CAS  Google Scholar 

  50. Séverac E, Galy O, Turoun F, Pantel CA, Condoret JS, Monsan P, Marty A (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzym Microb Technol 48:61–70

    Article  Google Scholar 

  51. Shieh C-J, Liao H-F, Lee C-C (2003) Optimization of lipase-catalyzed biodiesel by surface response methodology. Bioresour Technol 88:103–106

    Article  CAS  PubMed  Google Scholar 

  52. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  53. Shinde GB, Sapkal VS, Raut NB (2011) Transesterification by reactive distillation for synthesis and characterization of biodiesel. In: Stoytcheva M, Montero G (eds) Biodiesel—feedstocks and processing technologies. InTech, Rijeka, pp 289–316

    Google Scholar 

  54. Soares CMF, Castro HF, Moraes FF, Zanin GM (1999) Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol 77–79:745–757

    Article  PubMed  Google Scholar 

  55. Soares CMF, Santos OA, Castro HF, Moraes FF, Zanin GM (2004) Studies on lipase immobilization in hydrophobic sol-gel matrix. Appl Biochem Biotechnol 113:307–319

    Article  PubMed  Google Scholar 

  56. Talukder MMR, Wu JC, Nguyen TBV, Fen NM, Melissa YLS (2009) Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. J Mol Catal B Enzym 60:106–112

    Article  CAS  Google Scholar 

  57. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634

    Article  CAS  PubMed  Google Scholar 

  58. Tani K, Suzuki Y (1996) Influence of titania matrix on retention behaviour in reversed-phase liquid chromatography. J Chromatogr A 722:129–134

    Article  CAS  Google Scholar 

  59. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    Article  CAS  Google Scholar 

  60. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 17:151–155

    Article  CAS  Google Scholar 

  61. Yan J, Pan G, Li L, Quan G, Ding D, Luo A (2010) Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J Coll Inter Sci 348:565–570

    Article  CAS  Google Scholar 

  62. Yu D, Wang C, Yin Y, Zhang A, Gao G, Fang X (2011) A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production. Green Chem 13:1869–1875

    Article  CAS  Google Scholar 

  63. Zhang J, Hu B (2011) Microbial biodiesel production—oil feedstocks produced from microbial cell cultivations. In: Stoytcheva M, Montero G (eds) Biodiesel—feedstocks and processing technologies. InTech, Rijeka, pp 93–110

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the Brazilian research foundations CNPq, FAPESP, and CAPES. The authors also thank the Catalysis Laboratory of the Department of Chemical Engineering of the Federal University of São Carlos for the thermogravimetric and surface area analyses, and the Postgraduate Program in Chemical Engineering of the Federal University of São Carlos (PPGEQ/UFSCar), where this work was undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo W. Tardioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.N., Oliveira, G.C., Rojas, M.J. et al. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. J Ind Microbiol Biotechnol 42, 523–535 (2015). https://doi.org/10.1007/s10295-015-1586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1586-9

Keywords

Navigation