Skip to main content

Advertisement

Log in

Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A medium-chain-length poly-3-hydroxyalkanote (MCL-PHA) depolymerase knockout mutant of Pseudomonas putida KT2440 was produced by double homologous recombination. A carbon-limited shake-flask study confirmed that depolymerase activity was eliminated. Lysis of both mutant and wild-type strains occurred under these conditions. In carbon-limited, fed-batch culture, the yield of unsaturated monomers from unsaturated substrate averaged only 0.62 mol mol−1 for the phaZ minus strain compared to 0.72 mol mol−1 for the wild type. The mutant strain also produced more CO2 and less residual biomass from the same amount of carbon substrate. However, most results indicated that elimination of PHA depolymerase activity had little impact on the overall yield of biomass and PHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arias S, Bassas-Galia M, Molinari G, Timmis KN (2013) Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 6(5):551–563. doi:10.1111/1751-7915.12040

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bagdasarian M, Timmis KN (1982) Host-vector systems for gene cloning in Pseudomonas. Curr Topics Microbiol Immunol 96:47–67

    CAS  Google Scholar 

  3. Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100(7):2265–2270. doi:10.1016/j.biortech.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  4. Choi MH, Xu J, Rho JK, Zhao XP, Yoon SC (2010) Enhanced production of longer side chain polyhydroxyalkanoic acid with ω-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid β-oxidation inhibition. Bioresour Technol 101(12):4540–4548. doi:10.1016/j.biortech.2010.01.082

    Article  CAS  PubMed  Google Scholar 

  5. de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA (2010) The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12(1):207–221. doi:10.1111/j.1462-2920.2009.02061.x

    Article  PubMed  Google Scholar 

  6. de Eugenio LI, Galán B, Escapa IF, Maestro B, Sanz JM, García JL, Prieto MA (2010) The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environ Microbiol 12(6):1591–1603. doi:10.1111/j.1462-2920.2010.02199.x

    PubMed  Google Scholar 

  7. de Eugenio LI, García JL, García P, Prieto MA, Sanz JM (2008) Comparative analysis of the physiological and structural properties of a medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas putida KT2442. Eng Life Sci 8(3):260–267. doi:10.1002/elsc.200700057

    Article  Google Scholar 

  8. de Eugenio LI, García P, Luengo JM, Sanz JM, San Román J, García JL, Prieto MA (2007) Biochemical evidence that phaZ gene encodes a specific intracellular medium-chain-length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442. Characterization of a paradigmatic enzyme. J Biol Chem 282(7):4951–4962. doi:10.1074/jbc.M608119200

    Article  PubMed  Google Scholar 

  9. Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoate. Macromolecules 23(15):3705–3707. doi:10.1021/ma00217a027

    Article  CAS  Google Scholar 

  10. Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 67(1–2):165–170. doi:10.1111/j.1574-6968.1990.tb13856.x

    Article  CAS  Google Scholar 

  11. Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75(3):643–651. doi:10.1128/AEM.01869-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fritzsche K, Lenz RW, Fuller RC (1990) An unusual bacterial polyester with a phenyl pendant group. Die Makromolekulare Chemie 191(8):1957–1965. doi:10.1002/macp.1990.021910821

    Article  CAS  Google Scholar 

  13. Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) The biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22(3):1106–1115. doi:10.1021/ma00193a018

    Article  CAS  Google Scholar 

  14. Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38(1):1–5. doi:10.1007/BF00169409

    Article  CAS  Google Scholar 

  15. Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of MCL-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219. doi:10.1016/j.mimet.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  16. Kim OY, Gross RA, Hammar WJ, Newmark RA (1996) Microbial synthesis of poly(β-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29(13):4572–4581. doi:10.1021/ma960059j

    Article  CAS  Google Scholar 

  17. Kim TK, Shin HD, Seo MC, Lee JN, Lee YH (2003) Molecular structure of PCR cloned PHA synthase genes of Pseudomonas putida KT2440 and its utilization for medium-chain-length polyhydroxyalkanoate production. J Microbiol Biotech 13(2):182–190

    Google Scholar 

  18. Kim YB, Kim DY, Rhee YH (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32(19):6058–6064. doi:10.1021/ma981904w

    Article  CAS  Google Scholar 

  19. Kim YB, Lenz RW (2001) Polyesters from microorganisms. In: Babel W, Steinbüchel A (eds) Advances in biochemical engineering/biotechnology: biopolyesters, vol 71. Springer, Berlin, Heidelberg, Germany, pp 51–79. doi:10.1007/3-540-40021-4_2

  20. Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25(7):1852–1857. doi:10.1021/ma00033a002

    Article  CAS  Google Scholar 

  21. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Rev 103(2–4):207–214. doi:10.1111/j.1574-6968.1992.tb05839.x

    Article  CAS  Google Scholar 

  23. Maclean H, Ramsay J, Ramsay B (2008) Declining exponential feeding as a strategy for the high-density production of medium-chain-length poly-3-hydroxyalkanoates. Can J Chem 86:564–569

    Article  CAS  Google Scholar 

  24. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martinsdos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808. doi:10.1046/j.1462-2920.2002.00366.x

    Article  CAS  PubMed  Google Scholar 

  25. Preusting H, Nijenhuis A, Witholt B (1990) Physical characteristics of poly(3-hydroxyalkanoates) and poly(3-hydroxyalkenoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons. Macromolecules 23(19):4220–4224. doi:10.1021/ma00221a007

    Article  CAS  Google Scholar 

  26. Ren Q, de Roo G, Ruth K, Witholt B, Zinn M, Thöny-Meyer L (2009) Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biomacromolecules 10(4):916–922. doi:10.1021/bm801431c

    Article  CAS  PubMed  Google Scholar 

  27. Ritter H, von Spee AG (1994) Bacterial production of polyesters bearing phenoxygroups in the side chains: poly(3-hydroxy-5-phenoxypentanoate-co-3-hydroxy-9-phenoxynonanoate) from Pseudomonas oleovorans. Macromol Chem Phys 195(5):1665–1672. doi:10.1002/macp.1994.021950517

    Article  CAS  Google Scholar 

  28. Sambrook J, David WR (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  29. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73. doi:10.1016/0378-1119(94)90324-7

    Article  PubMed  Google Scholar 

  30. Scholz C, Fuller RC, Lenz RW (1994) Production of poly(β-hydroxyalkanoates) with β-substituents containing terminal ester groups by Pseudomonas oleovorans. Macromol Chem Phys 195(4):1405–1421. doi:10.1002/macp.1994.021950424

    Article  CAS  Google Scholar 

  31. Schweizer HP, Hoang TT (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158(1):15–22. doi:10.1016/0378-1119(95)00055-B

    Article  CAS  PubMed  Google Scholar 

  32. Simon R, O’Connell M, Labes M, Puhler A (1986) Plasmid vector for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol 118:640–659. doi:10.1016/0076-6879(86)18106-7

    Article  CAS  PubMed  Google Scholar 

  33. Simon R, Priefer U, Puehler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nature Biotechnol 1(9):784–791. doi:10.1038/nbt1183-784

    Article  CAS  Google Scholar 

  34. Solaiman DKY, Ashby RD, Foglia TA (2003) Effect of inactivation of poly (hydroxyalkanoates) depolymerase gene on the properties of poly (hydroxyalkanoates) in Pseudomonas resinovorans. Appl Microbiol Biotechnol 62(5–6):536–543. doi:10.1007/s00253-003-1317-4

    Article  CAS  PubMed  Google Scholar 

  35. Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71(4):423–431. doi:10.1007/s00253-005-0191-7

    Article  CAS  PubMed  Google Scholar 

  36. Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74(1):69–77. doi:10.1007/s00253-006-0655-4

    Article  CAS  PubMed  Google Scholar 

  37. Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Fermentation process development for the production of medium-chain-length poly-3-hydroxyalkanoates. Appl Microbiol Biotechnol 75(3):475–485. doi:10.1007/s00253-007-0857-4

    Article  CAS  PubMed  Google Scholar 

  38. Sun Z, Ramsay JA, Guay M, Ramsay BA (2009) Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 82(4):657–662. doi:10.1007/s00253-008-1785-7

    Article  CAS  PubMed  Google Scholar 

  39. Witholt B, Kessler B (1999) Perspectives of medium-chain-length poly(hydroxyaIkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10(3):279–285. doi:10.1016/S0958-1669(99)80049-4

    Article  CAS  PubMed  Google Scholar 

  40. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21. doi:10.1016/S0169-409X(01)00218-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the provision of plasmid pEX18Tc, pK18mobsacB and E. coli S17-1 by Professor Keith Poole at the Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada, and the financial support of the Ontario Centres of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Ramsay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, M.T., Ko, K. & Ramsay, B. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440. J Ind Microbiol Biotechnol 42, 637–646 (2015). https://doi.org/10.1007/s10295-014-1574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1574-5

Keywords

Navigation