Skip to main content
Log in

Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NK:

Nattokinase

aprN :

The gene of nattokinase

mpr :

The gene of glutamyl endopeptidase Mpr

vpr :

The gene of extracellular serine protease Vpr

aprX :

The gene of serine protease AprX

epr :

The gene of minor extracellular protease Epr

bpr :

The gene of bacillopeptidase Bpr

wprA :

The gene of protease WprA

aprE :

The gene of serine protease AprE

bprA :

The gene of bacillopeptidase BprA

hag :

The gene of flagellin

amyl :

The gene of α-amylase

Svpr:

The signal peptide of Vpr

SsacC:

The signal peptide of SacC

SbprA:

The signal peptide of BprA

TamyL:

The terminator of α-amylase gene

pHY300PLK:

E. coli and B. subtilis shuttle vector

References

  1. Borgmeier C, Bongaerts J, Meinhardt F (2012) Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production. J Biotechnol 159:12–20

    Article  CAS  PubMed  Google Scholar 

  2. Chen PT, Chiang C-J, Chao Y-P (2007) Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology. Biotechnol Prog 23:1327–1332

    Article  CAS  PubMed  Google Scholar 

  3. Deepak V, Pandian SR, Kalishwaralal K, Gurunathan S (2009) Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresourc Technol 100:6644–6646

    Article  CAS  Google Scholar 

  4. Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer K, Jaeger K (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370–6376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Durban M, Silbersack J, Schweder T, Schauer F, Bornscheuer U (2007) High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biotechnol 74:634–639

    Article  CAS  PubMed  Google Scholar 

  6. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX (2007) Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv 25:1–12

    Article  CAS  Google Scholar 

  7. Kawabata Y, Kimura K, Funane K (2012) Extracellular production of cycloisomaltooligosaccharide glucanotransferase and cyclodextran by a protease-deficient Bacillus subtilis host-vector system. Appl Microbiol Biotechnol 93:1877–1884

    Article  CAS  PubMed  Google Scholar 

  8. Kotb E (2013) Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 97:6647–6665

    Article  CAS  PubMed  Google Scholar 

  9. Liang X, Jia S, Sun Y, Chen M, Chen X, Zhong J, Huan L (2007) Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli. Mol Biotechnol 37:187–194

    Article  CAS  PubMed  Google Scholar 

  10. Liang X, Zhang L, Zhong J, Huan L (2007) Secretory expression of a heterologous nattokinase in Lactococcus lactis. Appl Microbiol Biot 75:95–101

    Article  CAS  Google Scholar 

  11. Liu YH, Lu FP, Li Y, Wang JL, Gao C (2008) Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl Microbiol Biotechnol 80:795–803

    Article  CAS  PubMed  Google Scholar 

  12. Michael RG, Joseph S (2013) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory, New York

  13. Mukherjee S, Babitzke P, Kearns DB (2013) FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis. J Bacteriol 195:297–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56:1869–1871

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen T, Quyen T, Le H (2013) Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microb Cell Fact 12:79

    Article  PubMed Central  PubMed  Google Scholar 

  16. Osipiuk J, Mulligan R, Bargassa M, Hamilton JE, Cunningham MA, Joachimiak A (2012) Characterization of member of DUF1888 protein family, self-cleaving and self-assembling endopeptidase. J Biol Chem 287:19452–19461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Park CH, Lee SJ, Lee SG, Lee WS, Byun SM (2004) Hetero- and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. J Bacteriol 186:6457–6464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16

    Article  PubMed Central  PubMed  Google Scholar 

  19. Samant S, Gupta G, Karthikeyan S, Haq SF, Nair A, Sambasivam G, Sukumaran S (2014) Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity. J Ind Microbiol Biotechnol 41:1435–1442

    Article  CAS  PubMed  Google Scholar 

  20. Takoaka S (2006) Bacillus natto culture extract. US Patent 20060263865

  21. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  22. Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, Evers S, Maurer KH, Hecker M, Schweder T (2007) The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7:413–423

    Article  CAS  PubMed  Google Scholar 

  23. Voigt B, Schweder T, Sibbald MJJB, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer K-H, Gottschalk G, van Dijl JM, Hecker M (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281

    Article  CAS  PubMed  Google Scholar 

  24. Waldeck J, Meyer-Rammes H, Wieland S, Feesche J, Maurer K-H, Meinhardt F (2007) Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J Biotechnol 130:124–132

    Article  CAS  PubMed  Google Scholar 

  25. Wang SL, Chen HJ, Liang TW, Lin Y-D (2009) A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem 44:70–76

    Article  CAS  Google Scholar 

  26. Wang SL, Wu YY, Liang TW (2011) Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. N Biotechnol 28:196–202

    Article  CAS  PubMed  Google Scholar 

  27. Wei X, Luo M, Liu H (2014) Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine. Colloids Surf B Biointerfaces 116:418–423

    Article  CAS  PubMed  Google Scholar 

  28. Wei X, Tian G, Ji Z, Chen S (2014) A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J Chem Technol Biotechnol

  29. Wei XT, Luo MF, Xu L, Zhang YW, Lin X, Kong P, Liu HZ (2011) Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas. J Agric Food Chem 59:3957–3963

    Article  CAS  PubMed  Google Scholar 

  30. Weng M, Zheng Z, Bao W, Cai Y, Yin Y, Zou G (2009) Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochim Biophys Acta 1794:1566–1572

    Article  CAS  PubMed  Google Scholar 

  31. Westers H, Darmon E, Zanen G, Veening JW, Kuipers OP, Bron S, Quax WJ, Van Dijl JM (2004) The Bacillus secretion stress response is an indicator for α-amylase production levels. Lett Appl Microbiol 39:65–73

    Article  CAS  PubMed  Google Scholar 

  32. Wiegand S, Voigt B, Albrecht D, Bongaerts J, Evers S, Hecker M, Daniel R, Liesegang H (2013) Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production. Microb Cell Fact 12:120

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wu S, Feng C, Zhong J, Huan L (2011) Enhanced production of recombinant nattokinase in Bacillus subtilis by promoter optimization. World J Microbiol Biotechnol 27:99-106-106

  34. Wu XC, Lee W, Tran L, Wong SL (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173:4952–4958

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang XZ, Cui ZL, Hong Q, Li SP (2005) High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol 71:4101–4103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2013AA102801-52), National Key Basic Research Program of China (2015CB150505), the Natural Science Foundation of Hubei Province (2014CFB943), the Opening Project of State Key Laboratory of Agricultural Microbiology (AMLKF201403), and the National Natural Science Foundation of China (Grant 21106191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhou, Y., Chen, J. et al. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42, 287–295 (2015). https://doi.org/10.1007/s10295-014-1559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1559-4

Keywords

Navigation