Skip to main content
Log in

Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Baker’s yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguilera F, Peinado R, Millan C, Ortega J, Mauricio J (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  PubMed  Google Scholar 

  2. Amillastre E, Aceves-Lara C-A, Uribelarrea J-L, Alfenore S, Guillouet SE (2012) Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae. Bioresour Technol 112:242–250

    Article  Google Scholar 

  3. Bai F, Anderson W, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  PubMed  Google Scholar 

  4. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S (2012) Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. N Biotechnol 29:379–386

    Article  CAS  PubMed  Google Scholar 

  5. Bleoanca I, Silva ARC, Pimentel C, Rodrigues-Pousada C, Menezes RdA (2013) Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 116:697–705

    Article  CAS  PubMed  Google Scholar 

  6. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7:e1001287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Castillo Agudo L (1992) Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Microbiol Biotechnol 37:647–651

    Article  Google Scholar 

  8. Charles JS, Hamilton ML, Petes TD (2010) Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics 186:537–550

    Article  PubMed Central  Google Scholar 

  9. Chang SL, Lai HY, Tung SY, Leu JY (2013) Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 9:e1003232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991

    Article  CAS  PubMed  Google Scholar 

  11. den Haan R, Kroukamp H, Mert M, Bloom M, Görgens JF, van Zyl WH (2013) Engineering Saccharomyces cerevisiae for next generation ethanol production. J Chem Technol Biotechnol 88:983–991

    Article  Google Scholar 

  12. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66:2961–2968

    Article  CAS  PubMed  Google Scholar 

  13. Endo A, Nakamura T, Shima J (2009) Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol Lett 299:95–99

    Article  CAS  PubMed  Google Scholar 

  14. He XP, Zhang BR, Tan HR (2003) Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol Lett 25:773–778

    Article  CAS  PubMed  Google Scholar 

  15. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Caspeta Luis, Chen Yun, Ghiaci Payam, Feizi Amir, Buskov Steen, Hallström Björn M, Petranovic Dina, Nielsen Jens (2014) Altered sterol composition renders yeast thermotolerant. Science 346:75–78

    Article  CAS  PubMed  Google Scholar 

  17. Jo WJ, Kim JH, Oh E, Jaramillo D, Holman P, Loguinov AV, Arkin AP, Nislow C, Giaever G, Vulpe CD (2009) Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae. BMC Genomics 10:130

    Article  PubMed Central  PubMed  Google Scholar 

  18. Liu J, Zhu Y, Du G, Zhou J, Chen J (2012) Exogenous ergosterol protects Saccharomyces cerevisiae from d-limonene stress. J Appl Microbiol 114:482–491

    Article  PubMed  Google Scholar 

  19. López-Linares JC, Romero I, Cara C, Ruiz E, Castro E, Moya M (2014) Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 89:104–110

    Article  Google Scholar 

  20. Mahmud SA, Hirasawa T, Shimizu H (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109:262–266

    Article  CAS  PubMed  Google Scholar 

  21. Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  PubMed  Google Scholar 

  22. Polakowski T, Bastl R, Stahl U, Lang C (1999) Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:30–35

    Article  CAS  PubMed  Google Scholar 

  23. Shang F, Wang Z, Tan T (2008) High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77:1233–1240

    Article  CAS  PubMed  Google Scholar 

  24. Shen F, Peng L, Lin L, Zhang Y, Wu J, Zhang X, Deng S (2012) Bioethanol fermentation coupling with superoxide Dismutase (SOD) production from condensed sweet sorghum stalk juice. J Biobased Mater Bio 6:580–587

    Article  CAS  Google Scholar 

  25. Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Subbiah MT, Abplanalp W (2003) Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. Int J Vitam Nutr Res 73:19–23

    Article  CAS  PubMed  Google Scholar 

  27. Swan TM, Watson K (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169:191–197

    Article  CAS  PubMed  Google Scholar 

  28. Tamura K-I, Gu Y, Wang Q, Yamada T, Ito K, Shimoi H (2004) A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J Biosci Bioeng 98:159–166

    Article  CAS  PubMed  Google Scholar 

  29. Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS ONE 7:e31235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102:507–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4:87–95

    Article  CAS  PubMed  Google Scholar 

  32. Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM (2014) Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresour Technol 152:371–376

    Article  CAS  PubMed  Google Scholar 

  33. Wu JM, Mao XZ, Cai T, Luo JC, Wei LP (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wood JS (1982) Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae. Mol Cell Biol 2:1064–1079

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang H, Zeidler AF, Song W, Puccia CM, Malc E, Greenwell PW, Mieczkowski PA, Petes TD, Argueso JL (2013) Gene copy-number variation in haploid and diploid strains of the yeast Saccharomyces cerevisiae. Genetics 193:785–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zheng DQ, Chen J, Zhang K, Gao KH, Li O, Wang PM, Zhang XY, Du FG, Sun PY, Qu AM (2014) Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast. Appl Microbiol Biotechnol 98:3059–3070

    Article  CAS  PubMed  Google Scholar 

  37. Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97:2067–2076

    Article  CAS  PubMed  Google Scholar 

  38. Zheng DQ, Wang PM, Chen J, Zhang K, Liu TZ, Wu XC, Li YD, Zhao YH (2012) Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 13:479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zheng D, Zhang K, Gao K, Liu Z, Zhang X, Li O, Sun J, Zhang X, Du F, Sun P, Qu A, Wu X (2013) Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. PLoS ONE 8:e85022

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31370132 and 31401058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuechang Wu or Daoqiong Zheng.

Additional information

Ke Zhang and Mengmeng Tong have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Tong, M., Gao, K. et al. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 42, 207–218 (2015). https://doi.org/10.1007/s10295-014-1556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1556-7

Keywords

Navigation