Skip to main content
Log in

Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A newly isolated Bacillus sp. MC-07 showed 99.2 % 16S rRNA gene sequence similarity with the Bacillus thermoamylovorans LMG 18084T. It demonstrated optimum and maximum growth temperatures of 50 and 62 °C, respectively. The ability of MC-07 to produce optically pure l-lactic acid via direct fermentation of starch without enzymatic hydrolysis was investigated at different pH values (6.0–8.0) by intermittent adjustments every 12 h. During batch fermentation in mineral salt medium containing 0.001 % yeast extract at pH 7.0, 20 g/L of soluble starch was utilized to produce 16.6 g/L l-lactic acid at 50 °C within 24 h of fermentation, with 100 % optical purity, 92.1 % lactic acid selectivity, and an l-lactic acid yield of 0.977 g/g. Direct starch fermentation at pHs 6.0, 6.5, 7.5, and 8.0 resulted in considerably lower concentrations of lactic acid than did at pH 7.0. Compared with B. thermoamylovorans LMG 18084T, the ability of strain MC-07 to produce l-lactic acid was superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bomrungnok W, Sonomoto K, Pinitglang S, Wongwicharn A (2012) Single step lactic acid production from cassava starch by Lactobacillus plantarum SW14 in conventional continuous and continuous with high cell density. APCBEE Procedia 2:97–103

    Article  CAS  Google Scholar 

  2. Combet-Blanc Y, Ollivier B, Streicher C, Patel BKC, Dwivedi PP, Pot B, Prensier G, Garcia JL (1995) Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45:9–16

    Article  CAS  PubMed  Google Scholar 

  3. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  4. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  5. Guyot JP, Calderon M (2000) Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T. J Appl Microbiol 88:176–182

    Article  CAS  PubMed  Google Scholar 

  6. John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27:145–152

    Article  CAS  PubMed  Google Scholar 

  7. Narita J, Nakahara S, Fukuda H, Kondo A (2004) Efficient production of l-(+)-lactic acid from raw starch by Streptococcus bovis 148. J Biosci Bioeng 97:423–425

    Article  CAS  PubMed  Google Scholar 

  8. Niisawa C, Oka S, Kodama H, Hirai M, Kumagai Y, Mori K, Matsumoto J, Miyamoto H, Miyamoto H (2008) Microbial analysis of a composted product of marine animal resources and isolation of bacteria antagonistic to a plant pathogen from the compost. J Gen Appl Microbiol 158:149–158

    Article  Google Scholar 

  9. Ou MS, Ingram LO, Shanmugam KT (2011) l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38:599–605

    Article  CAS  PubMed  Google Scholar 

  10. Petrov K, Urshev Z, Petrova P (2008) l-(+)-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol 25:550–557

    Article  CAS  PubMed  Google Scholar 

  11. Petrova P, Petrov K (2012) l-(+)-lactic acid by a novel amylolytic strain of Lactobacillus paracasei B41. Starch/Stärke 64:10–17

    Article  CAS  Google Scholar 

  12. Sakai K, Ezaki Y (2006) Open l-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101:457–463

    Article  CAS  PubMed  Google Scholar 

  13. Sakai K, Murata Y, Yamazumi H, Tau Y, Mori M, Moriguchi M, Shirai Y (2000) Selective proliferation of lactic acid bacteria and accumulation of lactic acid during an open fermentation of food waste with intermittent pH adjustment. Food Sci Technol Res 6:140–145

    Article  Google Scholar 

  14. Sanni AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72:53–62

    Article  CAS  PubMed  Google Scholar 

  15. Saowanit T, Ratchanu M, Poudel P, Yoshino S, Okugawa Y, Tashiro Y, Taniguchi M, Sakai K (2014) Isolation of thermophilic l-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. J Biosci Bioeng 117:318–324

    Article  Google Scholar 

  16. Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb Technol 41:149–155

    Article  CAS  Google Scholar 

  17. Tashiro Y, Matsumoto H, Miyamoto H, Okugawa Y, Pramod P, Miyamoto H, Sakai K (2013) A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresour Technol 146:672–681

    Article  CAS  PubMed  Google Scholar 

  18. Vishnu VC, Seenayya G, Reddy G (2002) Direct fermentation of various pure and crude starchy substrates to l(+)-lactic acid using Lactobacillus amylophilus GV6. World J Microbiol Biotechnol 18:429–433

    Article  CAS  Google Scholar 

  19. Walton SL, Bischoff KM, van Heiningen ARP, van Walsum GP (2010) Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. J Ind Microbiol Biotechnol 37:823–830

    Article  CAS  PubMed  Google Scholar 

  20. Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol Lett 19:841–843

    Article  CAS  Google Scholar 

  21. Yumoto I, Ikeda K (1995) Direct fermentation of starch to l(+)-lactic acid using Lactobacillus amylophilus. Biotechnol Lett 17:543–546

    Article  CAS  Google Scholar 

  22. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263

    Article  CAS  Google Scholar 

  23. Zhao B, Wang L, Ma C, Yang C, Xu P, Ma Y (2010) Repeated open fermentative production of optically pure l-lactic acid using a thermophilic Bacillus sp. strain. Bioresour Technol 101:6494–6498

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Ye L, Wu JC (2013) Efficient production of l-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Appl Microbiol Biotechnol 97:4309–4314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partly by JSPS KAKENHI Grant number 26740050 and by Kyushu University interdisciplinary programs in education and projects in research development.

Conflict of interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sakai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudel, P., Tashiro, Y., Miyamoto, H. et al. Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. J Ind Microbiol Biotechnol 42, 143–149 (2015). https://doi.org/10.1007/s10295-014-1534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1534-0

Keywords

Navigation