Skip to main content
Log in

Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei

  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Trichoderma reesei is the preferred organism for producing industrial cellulases. However, cellulases derived from T. reesei have their highest activity at acidic pH. When the pH value increased above 7, the enzyme activities almost disappeared, thereby limiting the application of fungal cellulases under neutral or alkaline conditions. A lot of heterologous alkaline cellulases have been successfully expressed in T. reesei to improve its cellulolytic profile. To our knowledge, there are few reports describing the co-expression of two or more heterologous cellulases in T. reesei. We designed and constructed a promoter collection for gene expression and co-expression in T. reesei. Taking alkaline cellulase as a reporter gene, we assessed our promoters with strengths ranging from 4 to 106 % as compared to the pWEF31 expression vector (Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67–71). The promoter collection was used in a proof-of-principle approach to achieve the co-expression of an alkaline endoglucanase and an alkaline cellobiohydrolase. We observed higher activities of both cellulose degradation and biostoning by the co-expression of an endoglucanase and a cellobiohydrolase than the activities obtained by the expression of only endoglucanase or cellobiohydrolase. This study makes the process of engineering expression of multiple genes easier in T. reesei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  PubMed  CAS  Google Scholar 

  2. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2012) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  PubMed  Google Scholar 

  3. Uusitalo JM, Helena Nevalainen K, Harkki AM, Knowles JK, Penttilä ME (1991) Enzyme production by recombinant Trichoderma reesei strains. J Biotechnol 17(1):35–49

    Article  PubMed  CAS  Google Scholar 

  4. Zhong Y, Wang X, Yu H, Liang S, Wang T (2012) Application of T-DNA insertional mutagenesis for improving cellulase production in the filamentous fungus Trichoderma reesei. Bioresour Technol 110:572–577

    Article  PubMed  CAS  Google Scholar 

  5. Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase. Biochem J 321(2):375–381

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425

    Article  PubMed  CAS  Google Scholar 

  7. Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Chaabane FB, Linke R, Seiboth B, Kubicek CP (2011) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell 10(2):262–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Gusakov AV, Berlin AG, Popova NN, Okunev ON, Sinitsyna OA, Sinitsyn AP (2000) A comparative study of different cellulase preparations in the enzymatic treatment of cotton fabrics. Appl Biochem Biotechnol 88(1–3):119–126

    Article  CAS  Google Scholar 

  9. Qin Y, Wei X, Song X, Qu Y (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135(2):190–195

    Article  PubMed  CAS  Google Scholar 

  10. Nakane A, Koga J, Kubota H, Kono T (2005) Specific characteristics of an endoglucanase RCE1 from Rhizopus oryzae in the treatment of the dyed cotton fabrics. Sen-i Gakkaishi 61(8):229–233

    Article  CAS  Google Scholar 

  11. Geng A, Zou G, Yan X, Wang Q, Zhang J, Liu F, Zhu B, Zhou Z (2012) Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol 96(4):951–962

    Article  PubMed  CAS  Google Scholar 

  12. Meng F, Wei D, Wang W (2013) Heterologous protein expression in Trichoderma reesei using the cbhII promoter. Plasmid 70(2):272–276

    Article  PubMed  CAS  Google Scholar 

  13. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(1):1–12

    Article  Google Scholar 

  14. Covert SF, Kapoor P, M-H Lee, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105(3):259–264

    Article  CAS  Google Scholar 

  15. Zhao X, Wei D, Wang W (2014) Cloning, expression, sequence analysis and partial characterization of two alkaline β-1, 4-endoglucanases of Phaeosphaeria sp. LH21 from deep-sea mud. Appl Biochem Biotechnol 173:1295–1302

    Article  PubMed  CAS  Google Scholar 

  16. Schülein M (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57(1–3):71–81

    Article  PubMed  Google Scholar 

  17. Zhang G, Zhu Y, Wei D, Wang W (2014) Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy. Plasmid 71(1):16–22

    Article  PubMed  CAS  Google Scholar 

  18. Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67–71

    Article  PubMed  CAS  Google Scholar 

  19. Michielse CB, Hooykaas PJJ, van den Hondel CA, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48(1):1–17

    Article  PubMed  CAS  Google Scholar 

  20. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164

    Article  PubMed  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  22. Pedersen G, Screws G, Cedroni D (1992) Biopolishing of cellulosic fabrics. Can Textile J 109(12):31

    Google Scholar 

  23. Liu T, Wang T, Li X, Liu X (2008) Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization. Acta Biochim Biophys Sin 40(2):158–165

    Article  PubMed  CAS  Google Scholar 

  24. Stangl H, Gruber F, Kubicek CP (1993) Characterization of the Trichoderma reesei cbh2 promoter. Curr Genet 23(2):115–122

    Article  PubMed  CAS  Google Scholar 

  25. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttilä M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77(1):114–121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Würleitner E, Pera L, Wacenovsky C, Cziferszky A, Zeilinger S, Kubicek CP, Mach RL (2003) Transcriptional regulation of xyn2 in Hypocrea jecorina. Eukaryot Cell 2(1):150–158

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP (1996) Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271(41):25624–25629

    Article  PubMed  CAS  Google Scholar 

  28. Emalfarb M, Solovjeva IV, Ben-Bassat A, Burlingame R, Chernoglazov VM, Okounev ON, Olson P, Sinitsyn AP (1998) Chrysosporium cellulase and methods of use. WO Patent WO1998015633

  29. Klahorst S, Kumar A, Mullins M (1994) Optimizing the use of cellulase enzymes. Textile Chemist Colorist 26(2):13–18

    CAS  Google Scholar 

  30. Reyes-Ortiz V, Heins RA, Cheng G, Kim EY, Vernon BC, Elandt RB, Adams PD, Sale KL, Hadi MZ, Simmons BA (2013) Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol Biofuels 6(1):1–13

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863, Program NO.2012AA022206), and Fundamental Research Funds of the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Dongzhi Wei.

Additional information

Wei Wang and Fanju Meng have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Meng, F., Liu, P. et al. Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei . J Ind Microbiol Biotechnol 41, 1709–1718 (2014). https://doi.org/10.1007/s10295-014-1508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1508-2

Keywords

Navigation