Skip to main content
Log in

Whole genome sequencing reveals a novel CRISPR system in industrial Clostridium acetobutylicum

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Clostridium acetobutylicum is an important organism for biobutanol production. Due to frequent exposure to bacteriophages during fermentation, industrial C. acetobutylicum strains require a strong immune response against foreign genetic invaders. In the present study, a novel CRISPR system was reported in a C. acetobutylicum GXAS18-1 strain by whole genome sequencing, and several specific characteristics of the CRISPR system were revealed as follows: (1) multiple CRISPR loci were confirmed within the whole bacterial genome, while only one cluster of CRISPR-associated genes (Cas) was found in the current strain; (2) similar leader sequences at the 5’ end of the multiple CRISPR loci were identified as promoter elements by promoter prediction, suggesting that these CRISPR loci were under the control of the same transcriptional factor; (3) homology analysis indicated that the present Cas genes shared only low sequence similarity with the published Cas families; and (4) concerning gene similarity and gene cluster order, these Cas genes belonged to the csm family and originated from the euryarchaeota by horizontal gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beesch SC (1953) Acetone-butanol fermentation of starches. Appl Microbiol 1:85–95

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26

    PubMed  CAS  Google Scholar 

  3. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  4. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  PubMed  CAS  Google Scholar 

  5. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  6. Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vale PF, Little TJ (2010) CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci 277:2097–2103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  PubMed  CAS  Google Scholar 

  13. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:70–74

    Article  Google Scholar 

  17. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  PubMed Central  Google Scholar 

  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  20. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  21. Nye TM, Lio P, Gilks WR (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119

    Article  PubMed  CAS  Google Scholar 

  22. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ, Gaspin C, Clouet-d’Orval B (2011) Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genom 12:312

    Article  CAS  Google Scholar 

  25. Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M, Stratmann T, Wurm R, Raine A, Mescher M, Van Heereveld L, Mastop M, Wagner EG, Schnetz K, Van Der Oost J, Wagner R, Brouns SJ (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393

    Article  PubMed  CAS  Google Scholar 

  26. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  PubMed  CAS  Google Scholar 

  28. Vale PF, Little TJ (2010) CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci 277:2097–2103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  PubMed  CAS  Google Scholar 

  30. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  PubMed  CAS  Google Scholar 

  31. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    Article  PubMed  Google Scholar 

  32. Takeuchi N, Wolf YI, Makarova KS, Koonin EV (2012) Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol 194:1216–1225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  PubMed  CAS  Google Scholar 

  34. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510

    Article  PubMed  CAS  Google Scholar 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  PubMed  CAS  Google Scholar 

  36. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  37. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    Article  PubMed  Google Scholar 

  38. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  PubMed  CAS  Google Scholar 

  39. Hale C, Kleppe K, Terns RM, Terns MP (2008) Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14:2572–2579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lillestol RK, Shah SA, Brugger K, Redder P, Phan H, Christiansen J, Garrett RA (2009) CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72:259–272

    Article  PubMed  Google Scholar 

  41. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  PubMed  CAS  Google Scholar 

  42. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296:110–116

    Article  PubMed  CAS  Google Scholar 

  43. Agari Y, Kashihara A, Yokoyama S, Kuramitsu S, Shinkai A (2008) Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol Microbiol 70:60–75

    Article  PubMed  CAS  Google Scholar 

  44. Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A (2010) Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol 395:270–281

    Article  PubMed  CAS  Google Scholar 

  45. Shinkai A, Kira S, Nakagawa N, Kashihara A, Kuramitsu S, Yokoyama S (2007) Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 189:3891–3901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by BaGui Scholars Program Foundation, Basic Research Fund of Guangxi Academy of Sciences (NO.10YJ25SW13), Guangxi Natural Science Foundation (2013GXNSFBA019106) and Key Technologies R & D Program of Guangxi (10123007-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ribo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Pei, J., Pang, H. et al. Whole genome sequencing reveals a novel CRISPR system in industrial Clostridium acetobutylicum . J Ind Microbiol Biotechnol 41, 1677–1685 (2014). https://doi.org/10.1007/s10295-014-1507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1507-3

Keywords

Navigation