Skip to main content
Log in

A new mycinosyl rosamicin derivative produced by an engineered Micromonospora rosaria mutant with a cytochrome P450 gene disruption introducing the d-mycinose biosynthetic gene

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genetic engineering of post-polyketide synthase-tailoring genes can be used to generate new macrolide analogs through manipulation of the genes involved in their biosynthesis. Rosamicin, a 16-member macrolide antibiotic produced by Micromonospora rosaria IFO13697, contains a formyl group and an epoxide at C-20 and C-12/13 positions which are formed by the cytochrome P450 enzymes RosC and RosD, respectively. The d-mycinose biosynthesis genes in mycinamicin II biosynthesis gene cluster of Micomonospora guriseorubida A11725 were introduced into the rosC and rosD disruption mutants of M. rosaria IFO13697. The resulting engineered strains, M. rosaria TPMA0054 and TPMA0069, produced mycinosyl rosamicin derivatives, IZIV and IZV, respectively. IZIV was identified as a novel mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydrorosamicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anzai Y, Iizaka Y, Li W, Idemoto N, Tsukada S, Koike K, Kinoshita K, Kato F (2009) Production of rosamicin derivatives in Micromonospora rosaria by introduction of D-mycinose biosynthetic gene with ϕC31-derived integration vector pSET152. J Ind Microbiol Biotechnol 36:1013–1021

    Article  CAS  PubMed  Google Scholar 

  2. Anzai Y, Li S, Chaulagain MR, Kinoshita K, Kato F, Montgomery J, Sherman DH (2008) Function analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chem Biol 15:950–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Anzai Y, Sakai A, Li W, Iizaka Y, Koike K, Kinoshita K, Kato F (2010) Isolation and characterization of 23-O-mycinosyl-20-dihydro-rosamicin: a new rosamicin analogue derived from engineered Micromonospora rosaria. J Antibiot 63:325–328

    Article  CAS  PubMed  Google Scholar 

  4. Baltz RH, Seno ET, Stonesifer J, Wild GM (1983) Biosynthesis of the macrolide antibiotic tylosin. A preferred pathway from tylactone to tylosin. J Antibiot 36:131–141

    Article  CAS  PubMed  Google Scholar 

  5. Basnet DB, Park JW, Yoon YJ (2008) Combinatorial biosynthesis of 5-O-desosaminyl erythronolide A as a potent precursor of ketolide antibiotics. J Biotechnol 135:92–96

    Article  CAS  PubMed  Google Scholar 

  6. Fujiwara T, Watanabe H, Kogami Y, Shiritani Y, Sakakibara H (1989) 19-Deformyl-4′-deoxydesmycosin (TMC-016): synthesis and biological properties of a unique 16-membered macrolide antibiotic. J Antibiot 42:903–912

    Article  CAS  PubMed  Google Scholar 

  7. Iizaka Y, Higashi N, Ishida M, Oiwa R, Ichikawa Y, Takeda M, Anzai Y, Kato F (2013) Function of cytochrome P450 enzymes RosC and RosD in the biosynthesis of rosamicin macrolide antibiotic produced by Micromonospora rosaria. Antimicrob Agents Chemother 57:1529–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Inouye M, Takada Y, Muto N, Beppu T, Horinouchi S (1994) Characterization and expression of a P-450-like mycinamicin biosynthesis gene using a novel MicromonosporaEscherichia coli shuttle cosmid vector. Mol Gen Genet 245:456–464

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita K, Imura Y, Takenaka S, Hayashi M (1989) Mycinamicins, new macrolide antibiotics. XI. Isolation and structure elucidation of a key intermediate in the biosynthesis of the mycinamicins, mycinamicin VIII. J Antibiot 42:1869–1872

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima S, Kojiri K, Morishima H, Okanishi M (1990) New analogs of rosaramicin isolated from a Micromonospora strain. II. Structure determination. J Antibiot 43:1006–1009

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen HC, Darbon E, Thai R, Pernodet JL, Lautru S (2013) Post-PKS tailoring steps of the spiramycin macrolactone ring in Streptomyces ambofaciens. Antimicrob Agents Chemother 57:3836–3842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Pageni BB, Oh TJ, Sohng JK (2009) Novel desosaminyl derivatives of dihydrochalcomycin from a genetically engineered strain of Streptomyces sp. Biotechnol Lett 31:1759–1768

    Article  CAS  PubMed  Google Scholar 

  13. Park SR, Han AR, Ban YH, Yoo YJ, Kim EJ, Yoo YJ (2010) Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Micobiol Biotechnol 85:1227–1239

    Article  CAS  Google Scholar 

  14. Sakai A, Mitsumori A, Furukawa M, Kinoshita K, Anzai Y, Kato F (2012) Production of a hybrid 16-membered macrolide antibiotic by genetic engineering of Micromonospora sp. TPMA0041. J Ind Microbiol Biotechnol 39:1693–1701

    Article  CAS  PubMed  Google Scholar 

  15. Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka A, Watanabe A, Tsuchiya T, Umezawa S, Umezawa H (1981) Syntheses of 4’-deoxy-demycarosyl tylosin and its analogues. J Antibiot 34:1381–1384

    Article  CAS  PubMed  Google Scholar 

  17. Wagman GH, Waitz JA, Marquez J, Murawski A, Oden EM, Testa RT, Weinstein MJ (1972) A new Micromonospora-produced macrolide antibiotic, rosamicin. J Antibiot 25:641–646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yojiro Anzai.

Additional information

Y. Iizaka and N. Higashi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iizaka, Y., Higashi, N., Li, W. et al. A new mycinosyl rosamicin derivative produced by an engineered Micromonospora rosaria mutant with a cytochrome P450 gene disruption introducing the d-mycinose biosynthetic gene. J Ind Microbiol Biotechnol 41, 1451–1456 (2014). https://doi.org/10.1007/s10295-014-1488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1488-2

Keywords

Navigation