Skip to main content

Advertisement

Log in

Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, the yeast strain P5 isolated from a mangrove system was identified to be a strain of Aureobasidium pullulans var. melanogenum and was found to be able to secrete a large amount of heavy oil into medium. After optimization of the medium for heavy oil production and cell growth by the yeast strain P5, it was found that 120.0 g/l of glucose and 0.1 % corn steep liquor were the most suitable for heavy oil production. During 10-l fermentation, the yeast strain P5 produced 32.5 g/l of heavy oil and cell mass was 23.0 g/l within 168 h. The secreted heavy oils contained 66.15 % of the long-chain n-alkanes and 26.4 % of the fatty acids, whereas the compositions of the fatty acids in the yeast cells were only C16:0 (21.2 %), C16:1(2.8 %), C18:0 (2.9 %), C18:1 (39.8 %), and C18:2 (33.3 %). We think that the secreted heavy oils may be used as a new source of petroleum in marine environments. This is the first report of yeast cells which can secrete the long-chain n-alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355–1369

    Article  CAS  PubMed  Google Scholar 

  2. Bagaeva TV, Zinurova EE (2004) Comparative characterization of extracellular and intracellular hydrocarbons of Clostridium pasteurianum. Biochemistry (Moscow) 69:427–428

    Article  CAS  Google Scholar 

  3. Chi ZM, Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86:1047–1052

    Article  CAS  PubMed  Google Scholar 

  4. Chi ZM, Liu J, Zhang W (2001) Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme Microb Technol 38:240–246

    Article  Google Scholar 

  5. Chi ZM, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98:534–538

    Article  CAS  PubMed  Google Scholar 

  6. Folch J, Lees M, Slane-Stanley J (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  7. Jansson C (2012) Metabolic engineering of cyanobacteria for direct conversion of CO2 to hydrocarbon biofuels. In: Luttge U et al (eds) Progress in Botany, vol 73., Progress in Botany 73Springer, Berlin, pp 81–93

    Google Scholar 

  8. Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2013) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98:1539–1546

    Article  PubMed  Google Scholar 

  9. Kurosawa T, Sakai K, Nakahara T, Nakahara T, Oshima Y, Tabuchi T (1994) Extracellular accumulation of the polyol lipids, 3,5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium sp. Biosci Biotech Biochem 58:2057–2060

    Article  CAS  Google Scholar 

  10. Kurtzman CP, Fell JW (2000) The yeasts. A taxonomic study, 4th revised and enlarged edn. Elsevier, Amsterdam, pp 222–360

  11. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Proc Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  12. Li M, Liu GL, Chi Z, Chi ZM (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenerg 4:101–107

    Article  Google Scholar 

  13. Li Y, Chi Z, Wang GY, Wang ZP, Liu GL, Lee CF, Ma ZC, Chi ZM (2013) Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit Rev Microbiol 1–10

  14. Manitchotpisit P, Price NPJ, Leathers TD, Punnapayak H (2011) Heavy oils produced by Aureobasidium pullulans. Biotechnol Lett 33:1151–1157

    Article  CAS  PubMed  Google Scholar 

  15. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  16. Nghiem NP, Davison BH, Thompson JE, Suttle BE, Richardson GR (1996) The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 57(58):633–638

    Article  Google Scholar 

  17. Nikolaev YA, Panikov NS, Lukin SM, Osipov GA (2001) Saturated C21–C33 hydrocarbons are involved in the self-regulation of Pseudomonas fluorescens adhesion to a glass surface. Microbiology (Moscow) 70:174–181

    Article  Google Scholar 

  18. Price NPJ, Manitchotpisit P, Vermillion KE (2013) Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32

    Article  CAS  PubMed  Google Scholar 

  19. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochim 86:807–815

    Article  CAS  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Preparation and analysis of eukaryotic genomic DNA. In: Molecular cloning: a laboratory manual, 2nd ed. ColdSpring Harbor Laboratory Press, Beijing, pp 367–370 (Chinese translating Ed.)

  21. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  22. Schumann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703

    Article  PubMed  Google Scholar 

  23. Sharma N, Prasad GS, Choudhury AR (2013) Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydr Polym 93:95–101

    Article  CAS  PubMed  Google Scholar 

  24. Spiro RG (1966) Analysis of sugars found in glycoproteins. Meth Enzymol 8:3–26

    Article  CAS  Google Scholar 

  25. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Article  CAS  PubMed  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mole Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  27. Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta 1831:675–682

    Article  CAS  PubMed  Google Scholar 

  28. Wang CL, Li Y, Xin FH, Liu YY, Chi ZM (2014) Single cell oil production by Aureobasidium pullulans var. melanogenum P10 isolated from mangrove systems for biodiesel making. Proc Biochem 49:725–731

    CAS  Google Scholar 

  29. Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by State Oceanic Administration People’s Republic of China for providing financial support to carry out this work. The Grant No. is 201005032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YY., Chi, Z., Wang, ZP. et al. Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Ind Microbiol Biotechnol 41, 1329–1337 (2014). https://doi.org/10.1007/s10295-014-1484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1484-6

Keywords

Navigation