Skip to main content
Log in

High-level production of Fc-fused kringle domain in Pichia pastoris

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Recently, as a new non-immunoglobulin-based protein scaffold, a human kringle domain was successfully engineered toward biologically functional agonists and antagonists. In this study, the fed-batch cultivation conditions were optimized for enhanced production of an Fc-fused kringle domain (KD548-Fc) in Pichia pastoris. Fed-batch cultivations were performed in 5-l laboratory-scale bioreactors, and in order to find the optimal conditions for high-level production of KD548-Fc, several parameters including the initial carbon source (glycerol) concentration, temperature, and pH were investigated. When cells were cultivated at pH 4.0 and 25 °C with 9.5 % glycerol in the initial medium, the highest production yield (635 mg/l) was achieved with high productivity (7.2 mg/l/h). Furthermore, functional KD548-Fc was successfully purified from the culture broth using a simple purification procedure with high purity and recovery yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banta S, Dooley K, Shur O (2013) Replacing antibodies: engineering new binding proteins. Annu Rev Biomed Eng 15:93–113

    Article  CAS  PubMed  Google Scholar 

  2. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  CAS  PubMed  Google Scholar 

  3. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  PubMed  Google Scholar 

  4. Damasceno LM, Huang CJ, Batt CA (2012) Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93:31–39

    Article  PubMed  Google Scholar 

  5. Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37:18–26

    Article  CAS  PubMed  Google Scholar 

  6. Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245–255

    Article  CAS  PubMed  Google Scholar 

  8. Gurramkonda C, Adnan A, Gabel T, Lunsdorf H, Ross A, Nemani SK, Swaminathan S, Khanna N, Rinas U (2009) Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microb Cell Fact 8:13

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23:790–797

    Article  CAS  PubMed  Google Scholar 

  10. Hao J, Xu L, He H, Du X, Jia L (2013) High-level expression of staphylococcal protein A in Pichia pastoris and purification and characterization of the recombinant protein. Protein Expr Purif 90:178–185

    Article  CAS  PubMed  Google Scholar 

  11. Inan M, Aryasomayajula D, Sinha J, Meagher MM (2006) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93:771–778

    Article  CAS  PubMed  Google Scholar 

  12. Inan M, Chiruvolu UV, Eskridge UKM, Vlasuk GP, Dickerson K, Brown S, Meagher M (1999) Optimization of temperature–glycerol–pH conditions for a fed-batch fermentation process for recombinant hookworm (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzyme Microb Technol 24:438–445

    Article  CAS  Google Scholar 

  13. Jeong KJ, Jang SH, Velmurugan N (2011) Recombinant antibodies: engineering and production in yeast and bacterial hosts. Biotechnol J 6:16–27

    Article  CAS  PubMed  Google Scholar 

  14. Khow O, Suntrarachun S (2012) Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2:159–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee HW, Lee SH, Lee HW, Ryu YW, Kwon MH, Kim YS (2005) Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. Biochem Biophys Res Commun 330:1205–1212

    Article  CAS  PubMed  Google Scholar 

  16. Lee CH, Park KJ, Sung ES, Kim A, Choi JD, Kim JS, Kim SH, Kwon MH, Kim YS (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci USA 107:9567–9571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:438–445

    Article  PubMed  Google Scholar 

  18. Lin H, Kim T, Xiong F, Yang X (2007) Enhancing the production of Fc fusion protein in fed-batch fermentation of Pichia pastoris by design of experiments. Biotechnol Prog 23:621–625

    Article  CAS  PubMed  Google Scholar 

  19. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  PubMed  Google Scholar 

  20. Park KJ, Lee CH, Kim A, Jeong KJ, Kim CH, Kim YS (2012) Death receptors 4 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen species-mediated apoptotic cell death. J Biol Chem 287:3313–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Karkut T, Chamankhah M, Alting-Mees M, Hemmingsen SM, Hegedus D (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28:321–330

    Article  CAS  PubMed  Google Scholar 

  23. Skerra A (2000) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13:167–187

    Article  CAS  PubMed  Google Scholar 

  24. Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  PubMed  Google Scholar 

  25. Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d’Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27:1744–1750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Converging Research Center Program (grant no. 2009-0082332) and Basic Science Research Program (grant no. 2011-0016235) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science, ICT, and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Jun Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, G.M., Lee, Y.J., Kim, Y.S. et al. High-level production of Fc-fused kringle domain in Pichia pastoris . J Ind Microbiol Biotechnol 41, 989–996 (2014). https://doi.org/10.1007/s10295-014-1435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1435-2

Keywords

Navigation