Skip to main content
Log in

Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angeles Pozo-Bayon M, Victoria Moreno-Arribas M (2011) Sherry wines. Adv Food Nutr Res 63:17–40

    Article  CAS  PubMed  Google Scholar 

  2. Aranda A, del Olmo M (2003) Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast 20:747–759

    Article  CAS  PubMed  Google Scholar 

  3. Barnett JA, Payne RW, Yarrow D (1990) Yeast: characteristics and identification, 2nd edn. Cambridge University Press, England

    Google Scholar 

  4. Barrales RR, Jiménez J, Ibeas JI (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178:145–156

    Article  CAS  PubMed  Google Scholar 

  5. Benítez T, Rincón AM, Codón AC (2011) Yeasts used in biologically aged wines. In: Carrascosa AV, Munoz D, González R (eds) Molecular wine microbiology. Elsevier, San Diego p 51–84

  6. Boyd AR, Gunasekera TS, Attfield PV, Simic K, Vincent SF, Veal DA (2003) A flow-cytometric method for determination of yeast viability and cell number in a brewery. FEMS Yeast Res 3:11–16

    CAS  PubMed  Google Scholar 

  7. Budroni M, Giordano G, Pinna G, Farris GA (2000) A genetic study of natural flor strains of Saccharomyces cerevisiae isolated during biological ageing from Sardinian wines. J Appl Microbiol 89:657–662

    Article  CAS  PubMed  Google Scholar 

  8. Capece A, Romaniello R, Siesto G, Pietrafesa R, Massari C, Poeta C, Romano P (2010) Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int J Food Microbiol 144:187–192

    Article  CAS  PubMed  Google Scholar 

  9. Casalta E, Aguera E, Picou C, Rodriguez-Bencomo JJ, Salmon JM, Sablayrolles JM (2010) A comparison of laboratory and pilot-scale fermentations in winemaking conditions. Appl Microbiol Biotechnol 87:1665–1673

    Article  CAS  PubMed  Google Scholar 

  10. Codón AC, Benítez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol 49:154–163

    Article  PubMed  Google Scholar 

  11. Charpentier C, Colin A, Alais A, Legras JL (2009) French Jura flor yeasts: genotype and technological diversity. Antonie Van Leeuwenhoek 95:263–273

    Article  PubMed  Google Scholar 

  12. Chovanova K, Krakova L, Zenisova K, Turcovska V, Brezna B, Kuchta T, Pangallo D (2011) Selection and identification of autochthonous yeasts in Slovakian wine samples using a rapid and reliable three-step approach. Lett Appl Microbiol 53:231–237

    Article  CAS  PubMed  Google Scholar 

  13. De Benedictis M, Bleve G, Grieco F, Tristezza M, Tufariello M, Grieco F (2010) An optimized procedure for the enological selection of non-Saccharomyces starter cultures. Antonie Van Leeuwenhoek 99:189–200

    Article  PubMed  Google Scholar 

  14. Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A (2008) Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. FEMS Yeast Res 8:1127–1136

    Article  CAS  PubMed  Google Scholar 

  15. Esteve-Zarzoso B, Fernandez-Espinar MT, Querol A (2004) Authentication and identification of Saccharomyces cerevisiae ‘flor’ yeast races involved in sherry ageing. Antonie Van Leeuwenhoek 85:151–158

    Article  CAS  PubMed  Google Scholar 

  16. Esteve-Zarzoso B, Peris-Torán MJ, García-Maiquez E, Uruburu F, Querol A (2001) Yeast population dynamics during the fermentation and biological aging of sherry wines. Appl Environ Microbiol 67:2056–2061

    Article  CAS  PubMed  Google Scholar 

  17. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  PubMed  Google Scholar 

  18. Ibeas JI, Lozano I, Perdigones F, Jiménez J (1997) Dynamics of flor yeast populations during the biological aging of Sherry wines. Am J Enol Vitic 48:75–79

    Google Scholar 

  19. Ishigami M, Nakagawa Y, Hayakawa M, Iimura Y (2006) FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem 70:660–666

    Article  CAS  PubMed  Google Scholar 

  20. Lopes CA, Rodriguez ME, Sangorrin M, Querol A, Caballero AC (2007) Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J Ind Microbiol Biotechnol 34:139–149

    Article  CAS  PubMed  Google Scholar 

  21. Lopes CA, Rodríguez ME, Sangorrin M, Querol A, Caballero AC (2007) Patagonian wines: the selection of an indigenous yeast starter. J Ind Microbiol Biotechnol 34:539–546

    Article  CAS  PubMed  Google Scholar 

  22. Martinez P, Codón AC, Perez L, Benítez T (1995) Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast 11:1399–1411

    Article  CAS  PubMed  Google Scholar 

  23. Martínez P, Pérez L, Benítez T (1997) Evolution of flor yeast population during the biological aging of fino sherry wine. Am J Enol Vitic 48:160–168

    Google Scholar 

  24. Martínez P, Pérez L, Benítez T (1997) Factors which affect velum formation by flor yeast isolated from sherry wine. Syst Appl Microbiol 20:154–157

    Article  Google Scholar 

  25. Martínez P, Pérez L, Benítez T (1997) Velum formation by flor yeasts isolated from sherry wine. Am J Enol Vitic 48:55–62

    Google Scholar 

  26. Martínez P, Valcárcel MJ, Pérez L, Benítez T (1998) Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of fino sherry: by-products and aroma compounds. Am J Enol Vitic 49:240–250

    Google Scholar 

  27. Mesa JJ, Infante JJ, Rebordinos L, Cantoral JM (1999) Characterization of yeasts involved in the aging of sherry wines. Food Sci Technol 32:114–120

    CAS  Google Scholar 

  28. Muñoz D, Peinado RA, Medina M, Moreno J (2005) Biological aging of sherry wines using pure cultures of two flor yeast strains under controlled microaeration. J Agric Food Chem 53:5258–5264

    Article  PubMed  Google Scholar 

  29. Nelson NJ (1955) Colorimetric analysis of sugars. Methods Enzymol 3:85–86

    Google Scholar 

  30. OIV (1990) Recueil des Methodes Internationales d’Analysis des Vins et des Mouts. Office Internationale Vigne Vin, Paris

  31. Peinado RA, Moreno J, Medina M, Mauricio JC (2004) Changes in volatile compounds and aromatic series in sherry wine with high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol Lett 26:757–762

    Article  CAS  PubMed  Google Scholar 

  32. Pulvirenti A, Rainieri S, Boveri S, Giudici P (2009) Optimizing the selection process of yeast starter cultures by preselecting strains dominating spontaneous fermentations. Can J Microbiol 55:326–332

    Article  CAS  PubMed  Google Scholar 

  33. Rodríguez ME, Infante JJ, Molina M, Domínguez M, Rebordinos L, Cantoral JM (2010) Genomic characterization and selection of wine yeast to conduct industrial fermentations of a white wine produced in a SW Spain winery. J Appl Microbiol 108:1292–1302

    Article  PubMed  Google Scholar 

  34. Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  PubMed  Google Scholar 

  35. Settanni L, Sannino C, Francesca N, Guarcello R, Moschetti G (2012) Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J Biosci Bioeng 114:606–614

    Article  CAS  PubMed  Google Scholar 

  36. Somogyi M (1952) Note on sugar determination. J Biol Chem 195:19–25

    CAS  Google Scholar 

  37. Suárez-Lepe JA (1997) Levaduras vínicas: funcionalidad y uso en bodegas. Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  38. Suárez-Lepe JA, Íñigo Leal B (2004) Microbiología enológica. Fundamentos de vinificación, 3rd edn. Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  39. Suzzi G, Schirone M, Sergi M, Marianella RM, Fasoli G, Aguzzi I, Tofalo R (2012) Multistarter from organic viticulture for red wine Montepulciano d’Abruzzo production. Front Microbiol 3:135

    PubMed  Google Scholar 

  40. Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  CAS  PubMed  Google Scholar 

  41. Teresa Fernández-Espinar M, Barrio E, Querol A (2003) Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast 20:1213–1226

    Article  PubMed  Google Scholar 

  42. Torrens J, Urpi P, Riu-Aumatell M, Vichi S, López-Tamames E, Buxaderas S (2008) Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. Int J Food Microbiol 124:48–57

    Article  CAS  PubMed  Google Scholar 

  43. Tristezza M, Vetrano C, Bleve G, Grieco F, Tufariello M, Quarta A, Mita G, Spano G, Grieco F (2012) Autochthonous fermentation starters for the industrial production of Negroamaro wines. J Ind Microbiol Biotechnol 39:81–92

    Article  CAS  PubMed  Google Scholar 

  44. Xufre A, Albergaria H, Girio F, Spencer-Martins I (2010) Use of interdelta polymorphisms of Saccharomyces cerevisiae strains to monitor population evolution during wine fermentation. J Ind Microbiol Biotechnol 38:127–132

    Article  PubMed  Google Scholar 

  45. Zara G, Zara S, Pinna C, Marceddu S, Budroni M (2009) FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology 155:3838–3846

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by CICYT projects AGL2006-03947, TRACE PET2008_0283, and Junta de Andalucía (PAI CVI-107 PO6-CVI-01546). There was financial support from Beam Global-Jerez de la Frontera (OG-127/06, OG-185/07). The authors thank the cellar and laboratory staff at Beam Global España S. L. for their kind help; they also thank A. M. Rincón for useful criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Rodríguez-Palero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Palero, M.J., Fierro-Risco, J., Codón, A.C. et al. Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines. J Ind Microbiol Biotechnol 40, 613–623 (2013). https://doi.org/10.1007/s10295-013-1251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1251-0

Keywords

Navigation