Skip to main content
Log in

Use of in situ solid-phase adsorption in microbial natural product fermentation development

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

It has been half a century since investigators first began experimenting with adding ion exchange resins during the fermentation of microbial natural products. With the development of nonionic polymeric adsorbents in the 1970s, the application of in situ product adsorption in bioprocessing has grown slowly, but steadily. To date, in situ product adsorption strategies have been used in biotransformations, plant cell culture, the production of biofuels, and selected bulk chemicals, such as butanol and lactic acid, as well as in more traditional natural product fermentation within the pharmaceutical industry. Apart from the operational gains in efficiency from the integration of fermentation and primary recovery, the addition of adsorbents during fermentation has repeatedly demonstrated the capacity to significantly increase titers by sequestering the product and preventing or mitigating degradation, feedback inhibition and/or cytotoxic effects. Adoption of in situ product adsorption has been particularly valuable in the early stages of natural product-based drug discovery programs, where quickly and cost-effectively generating multigram quantities of a lead compound can be challenging when using a wild-type strain and fermentation conditions that have not been optimized. While much of the literature involving in situ adsorption describes its application early in the drug development process, this does not imply that the potential for scale-up is limited. To date, commercial-scale processes utilizing in situ product adsorption have reached batch sizes of at least 30,000 l. Here we present examples where in situ product adsorption has been used to improve product titers or alter the ratios among biosynthetically related natural products, examine some of the relevant variables to consider, and discuss the mechanisms by which in situ adsorption may impact the biosynthesis of microbial natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrams IM, Millar JR (1997) A history of the origin and development of macroporous ion-exchange resins. React Funct Polym 35:7–22

    Article  CAS  Google Scholar 

  2. Arslanian RL, Parker CD, Wang PK, McIntire JR, Lau J, Starks C, Licari PJ (2002) Large-scale isolation and crystallization of epothilone D from Myxococcus xanthus cultures. J Nat Prod 65:570–572

    Article  PubMed  CAS  Google Scholar 

  3. Bechtold M, Panke S (2009) In situ product recovery integrated with biotransformations. Chemia 63(6):345–348

    CAS  Google Scholar 

  4. Benigni D, Gougoutas JZ, DiMarco JD (2006) Method for the preparation, isolation and purification of epothilone B and x-ray crystal structures of epothilone B. US Patent Application No. US 2006/0135474 A1

  5. Bo J, Jin ZH, Lei YL, Mei LH, Li NH (2006) Improved production of pristinamycin coupled with the adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol Lett 28:1811–1815

    Article  Google Scholar 

  6. Boot CM, Gassner NC, Compton JE, Tenney K, Tramble CM, Lokey SR, Holman TR, Crews P (2007) Pinpointing pseurotins from marine-derived Aspergillus as tools for chemical genetics using synthetic lethality yeast screen. J Nat Prod 70:1672–1675

    Article  PubMed  CAS  Google Scholar 

  7. Carlson JC, Shengying Li, Burr DA, Sherman DH (2009) Isolation and characterization of Tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72:2076–2079

    Article  PubMed  CAS  Google Scholar 

  8. Cella R, Vining LC (1975) Resistance to streptomycin in a producing strain of Streptomyces griseus. Can J Microbiol 21:463–472

    Article  PubMed  CAS  Google Scholar 

  9. Cundliffe E, Demain AL (2010) Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 37:643–672

    Article  PubMed  CAS  Google Scholar 

  10. Denkewalter RG, Gillin J (1959) Verfahren zur Gewinnung von antibiotica. Auslegreshrift 1062891

  11. Desai MC, Chackalamannil S (2008) Rediscovering the role of natural products in drug discovery. Curr Opin Drug Discov Dev 11(4):436–437

    CAS  Google Scholar 

  12. Fierro JF, Hardisson C, Salas JA (1988) Involvement of cell impermeability in resistance to macrolides in some producer streptomycetes. J Antibiot 41(1):142–144

    Article  PubMed  CAS  Google Scholar 

  13. Fontanals N, Marcé RM, Borrull F (2005) New hydrophilic materials for solid-phase extraction. Trends Anal Chem 24(5):394–406

    Article  CAS  Google Scholar 

  14. Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing. Biotechnology 11:1007–1012

    Article  PubMed  CAS  Google Scholar 

  15. Frykman S, Tsuruta H, Galazzo J, Licari P (2006) Characterization of product capture resin during microbial cultivation. J Ind Microbiol Biotechnol 33:445–453

    Article  PubMed  CAS  Google Scholar 

  16. Frykman SA, Tsuruta H, Licari PJ (2005) Assessment of fed-batch, semicontinuous and continuous epothilone D production processes. Biotechnol Prog 21:1102–1108

    Article  PubMed  CAS  Google Scholar 

  17. Fujii N, Katsuyama T, Kobayashi K, Hara M, Nakano H (1995) The clecarmycins, new antitumor antibiotic produced by streptomyces: fermentation, isolation and biological properties. J Antibiot 48(8):768–772

    Article  PubMed  CAS  Google Scholar 

  18. Gastaldo L, Marinelli f, Acquarella C, Restelli E, Quarta C (1996) Improvement of the kirromycin fermentation by resin addition. J Ind Microbiol 16:305–308

    Article  CAS  Google Scholar 

  19. Gerth K, Bedorf N, Irschik H, Höfle G (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). J Antibiot 47(1):23–31

    Article  PubMed  CAS  Google Scholar 

  20. Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    Article  PubMed  CAS  Google Scholar 

  21. Gerth K, Washausen P, Höfle G, Irschik H, Reichenback H (1995) The jerangolids: a family of new antifungal compounds from Sorangium cellulosum (Myxobacteria). J Antibiot 49(1):71–75

    Article  Google Scholar 

  22. Hara M, Asano K, Kawamoto I, Takiguchi T, Katsumata S, Takahashi KI, Nakano H (1989) Leinamycin, a new antitumor antibiotic from Streptomyces, producing organism, fermentation and isolation. J Antibiot 42(12):1768–1774

    Article  PubMed  CAS  Google Scholar 

  23. Hara M, Takiguchi T, Ashizawa T, Gomi K, Nakano H (1991) Sapurimycin, new antitumor antibiotic produced by Streptomyces. Producing organism, fermentation, isolation and biological properties. J Antibiot 44(1):33–39

    Article  PubMed  CAS  Google Scholar 

  24. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19/20):894–901

    Article  PubMed  CAS  Google Scholar 

  25. He H, Ding WD, Berman VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, Carter GT (2001) Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitienses. J Am Chem Soc 123:5362–5363

    Article  PubMed  CAS  Google Scholar 

  26. Hollmann D, Merrettig-Bruns U, Müller U, Onken U (1990) Secondary metabolites by extractive fermentation, Separations for biotechnology 2. Papers presented at the 2nd international symposium on separations for biotechnology 2, 567–576

  27. Inoue K, Yamazaki M, Armentrout RW (1991) Process for producing streptovaricin. European Patent Application 91309793.7, EP 0 482 908 A2

  28. Jarvis BB, Armstrong CA, Zeng M (1990) Use of resin for trichothecene production in liquid cultures. J Antibiotic 43(11):1502–1504

    Article  CAS  Google Scholar 

  29. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97(6):347–364

    PubMed  CAS  Google Scholar 

  30. Karwowski JP, Jackson M, Sunga G, Sheldon P, Poddig JB, Kohl WL, Kadam S (1994) Dorrigocins: novel antifungal antibiotics that change the morphology of ras-transformed NIH/3T3 cells to that of normal cells. J Antibiot 47(8):862–869

    Article  PubMed  CAS  Google Scholar 

  31. Kim BH, Andersen C, Benz R (2001) Identification of a cell wall channel of Streptomyces griseus: the channel contains a binding site for streptomycin. Mol Microbiol 41(3):655–673

    Article  Google Scholar 

  32. Kim CH, Kim SW, Hong SI (2000) An integrated fermentation-separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35:485–490

    Article  CAS  Google Scholar 

  33. Kim JJ, Lim SK, Lee MO, Lim SM, Lee B, Kim DH (2009) Method of extraction and yield-up of tricyclo compounds by adding a solid adsorbent as their carriers in fermentation medium. WO 2009/025439 A1

  34. Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458

    Article  PubMed  CAS  Google Scholar 

  35. Kusunose Y, Wang DIC (2004) Enhancement of production of phenylalanine using uncharged polymeric beads. Chem Eng Comm 191:1199–1207

    Article  CAS  Google Scholar 

  36. Kusunose Y, Wang DIC (2004) Preliminary studies on extractive fermentation of phenylalanine using uncharged polymeric beads. Chem Eng Comm 191:1185–1198

    Article  CAS  Google Scholar 

  37. Lam KS, Gustavson DR, Veitch JA, Forenza S (1993) The effect of cerulenin on the production of esperamicin A1 by Actinomadura verrucosospora. J Ind Microbiol 12:99–102

    Article  PubMed  CAS  Google Scholar 

  38. Lam KS, Veitch JA, Lowe SE, Forenza S (1995) Effect of neutral resins on the production of dynemicins by Micromonospora chersina. J Ind Microbiol 15:453–456

    Article  CAS  Google Scholar 

  39. Lau J, Frykman SA, Regentin R, Ou S, Tsuruta H, Licari PJ (2002) Optimizing the heterologous production of Epothilone D in Myxococcus xanthus. Biotechnol Bioeng 78(3):280–288

    Article  PubMed  CAS  Google Scholar 

  40. Leaf TA, Desai RP, Licari P, Woo EJ (2005) Method of producing a compound by fermentation. US 2005/0130283 A1

  41. Lee JC, Min JW, Park DJ, Son KH, Yoon KH, Park HR, Park YS, Kwon MG, Lee JM, Kim CJ (2005) Large-scale fermentation for the production of teicoplanin from a mutant of Actinoplanes teicomyceticus. J Microbiol Biotechnol 15(4):787–791

    CAS  Google Scholar 

  42. Lee JC, Park HR, Park DJ, Lee HB, Kim YB, Kim CJ (2003) Improved production of teicoplanin using adsorbent resin in fermentation. Lett Appl Microbiol 37:196–200

    Article  PubMed  CAS  Google Scholar 

  43. Liu B, Hui J, Cheng YQ, Zhang X (2012) Extractive fermentation for enhanced production of thailandepsin A from Burkhoderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP20. J Ind Microbiol Biotechnol 39:767–776

    Article  PubMed  CAS  Google Scholar 

  44. Magarvey NA, Keller JM, Dernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycetes taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

    Article  PubMed  CAS  Google Scholar 

  45. Malla S, Niraula NP, Liou K, Sohng JK (2009) Self-resistance mechanism in Streptomyces peucetius: overexpression odrrA, drrB and drrC for doxorubicin enhancement. Microb Res 165:259–267

    Article  Google Scholar 

  46. Marshall VP, McWethy JS, Visser J, Cialdella JI, Laborde AL (1987) Current fermentation technology from actinomycetes: the example of paulomycin. Dev Ind Microbiol 28:105–114 J Ind Microbiol. Suppl No. 2

    CAS  Google Scholar 

  47. Marshall VP, McWethy SJ, Sirotti JM, Cialdella JI (1990) The effect of neutral resins on the fermentation production of rubradirin. J Ind Microbiol 5:283–288

    Article  PubMed  CAS  Google Scholar 

  48. Martin JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells sent out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  PubMed  CAS  Google Scholar 

  49. McDonald LA, Abbanat DR, Barbieri LR, Bernan VS, Discafani CM, Greenstein M, Janota D, Korshalla JD, Lassota P, Tischler M, Carter GT (1999) Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus. Tetrahedron Lett 40:2489–2492

    Article  CAS  Google Scholar 

  50. Millitzer M, Wenzig E, Peukert W (2005) Process modeling of in situ adsorption of a bacterial lipase. Biotech Bioeng 92(6):789–801

    Article  CAS  Google Scholar 

  51. Monteagudo JM, Aldavero M (1999) Production of L-lactic acid by Lactobacillus delbrueckii in chemostat culture using an ion exchange resin system. J Chem Technol Biotechnol 74:627–634

    Article  CAS  Google Scholar 

  52. Nagata, H Ochiai K, Aotani Y, Ando K, Yoshida M, Takahashi I, Tamaoki T (1997) Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, Isolation and biological activities. J Antibiot 50(7):537–540

    Article  PubMed  CAS  Google Scholar 

  53. Newman DJ, Cragg GM (2007) Natural products as a source of new drugs over the last twenty five years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  54. Park SW, Han SE, Kim DS, Sim SJ (2007) Improvement of epothilone B production by in situ removal of ammonium using cation exchange resin in Sorangium cellulosum culture. Biochem Eng Journal 37:328–331

    Article  CAS  Google Scholar 

  55. Payne GF, Wang HY (1989) The effect of feedback regulation and in situ product removal on the conversion of sugar to cyclohexamide by Streptomyces griseus. Arch Microbiol 151:331–335

    Article  CAS  Google Scholar 

  56. Potterat O (1994) Zähner (1993) Exfoliamycin and related metabolites, new naphthoquinone antibiotics from Streptomyces exfoliates. J Antibiot 46(2):346–349

    Article  Google Scholar 

  57. Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy–efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222

    Article  PubMed  CAS  Google Scholar 

  58. Robins RJ, Rhodes MJC (1986) The stimulation of anthraquinone production by Cinchona lidgeriana cultures with polymeric adsorbents. Appl Microbiol Biotechnol 24:35–41

    Article  CAS  Google Scholar 

  59. Rokem SJ, Hurley LH (1981) Sensitivity and permeability of the antramycin producing organism Streptomyces refuineus to anthrmycin and structurally related antibiotics. J Antibiot 34(9):1171–1174

    Article  PubMed  CAS  Google Scholar 

  60. Shin CS, Ahn BW, Lee SH, Sung UK, Bok SH (1988) Liberation of sisomicin from cells by sodium chloride. Appl Microbiol Biotechnol 28:37–38

    Article  CAS  Google Scholar 

  61. Shue YK, Du F, Chiou, MH, Wu MC, Chen YT, Duffield J, Okumu FW (2004) Tiacumicin Production. WO 2004/014295 A2

  62. Sim SJ, Chang HN (1997) Shikonin production by hairy roots of Lithospermum erythrorhizon in bioreactors with in situ separation. Hairy Roots 1997:219–225

    Google Scholar 

  63. Singh MP, Leighton MM, Barbieri LR, Roll DM, Urbance SE, Hoshan L, McDonald LA (2010) Fermentative production of self toxic fungal secondary metabolites. J Ind Microbiol Biotechnol 37:335–340

    Article  PubMed  CAS  Google Scholar 

  64. Stark D, von Stockar U (2003) In-situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 80:149–175

    PubMed  CAS  Google Scholar 

  65. Sugiyama M, Mizuno S, Ohta Y, Mochizuki H, Nimi O (1990) Kinetic studies of streptomycin uptake implicated in self-resistance in streptomycin producer. Biotechnol Lett 12(1):1–6

    Article  CAS  Google Scholar 

  66. Tsueng G, Lam KS (2007) Stabilization effect of resin on the production of potent proteasome inhibitor NPI-0052 during submerged fermentation of Salinispora tropica. J Antibiot 60(7):469–472

    Article  PubMed  CAS  Google Scholar 

  67. Viloria-Cols ME, Hatti-Kaul R, Mattiasson B (2004) Agarose-coated anion exchanger prevents cell-adsorbent interactions. J Chromatogr A 1043:195–200

    Article  PubMed  CAS  Google Scholar 

  68. Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiol 147:2447–2459

    CAS  Google Scholar 

  69. Wang HY, Kominek LA, Jost JL (1981) On-line extraction of fermentation processes. In: Moo Young M, Robinson CW, Vezina C (eds) Advances in Biotechnology I. Scientific and engineering principles. Pergamon Press, Oxford, pp 601–607

    Google Scholar 

  70. Warr GA, Veitch JA, Walsh AW, Hesler GA, Pirnik DM, Leet JE, Lin PFM, Medina IA, McBrien KD, Forenza A, Clark JM, Lam KS (1996) BMS-182123, a fungal metabolite that inhibits the production of TNF-α by macrophages and monocytes. J Antibiot 49(3):234–240

    Article  PubMed  CAS  Google Scholar 

  71. Williams RD, Chauret N, Bedard C, Archambault J (1992) Effect of polymeric adsorption of sanguinarine by Papaver somniferum cell cultures. Biotech Bioeng 40(8):971–977

    Article  CAS  Google Scholar 

  72. Woo EJ, Starks CM, Carney JR, Arslanian R, Cadapan L, Zavala S, Licari P (2002) Migrastatin and a new compound, Isomigrastatin, from Streptomyces platensis. J Antibiot 55(2):141–146

    Article  PubMed  CAS  Google Scholar 

  73. Xu LJ, Liu YS, Zhou LG, Wu JY (2009) Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2. Process Biochem 44:1063–1067

    Article  CAS  Google Scholar 

  74. Yamazaki M, Onoue K (1993) Process for the preparation of streptovaricin by fermentation. European Patent Application No. 92311235.3, EP 0 546 819 A1

  75. Yu PL, Dunn NW, Kim WS (2002) Lactate removal by anionic-exchange resin improves nisin production by Lactococcus lactis. Biotechnol Lett 24:59–64

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Michels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, T., Chase, M., Wagner, S. et al. Use of in situ solid-phase adsorption in microbial natural product fermentation development. J Ind Microbiol Biotechnol 40, 411–425 (2013). https://doi.org/10.1007/s10295-013-1247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1247-9

Keywords

Navigation