Skip to main content
Log in

Monascus secondary metabolites: production and biological activity

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565

    Article  PubMed  CAS  Google Scholar 

  2. Babitha S, Soccol CS, Pandey A (2006) Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471

    CAS  Google Scholar 

  3. Babitha S, Carvalho JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675

    Article  CAS  Google Scholar 

  4. Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ (2009) Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann Intern Med 16:830–839

    Google Scholar 

  5. Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterisation of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  PubMed  CAS  Google Scholar 

  6. Blanchi A (2005) Extracts of Monascus purpureus beyond statins- profile of efficacy and safety of the use of extracts of Monascus purpureus. Chin J Integr Med 11:309–313

    Article  Google Scholar 

  7. Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 283:34605–34614

    Article  PubMed  CAS  Google Scholar 

  8. Bridge PD, Hawkworth DL (1985) Biochemical tests as an aid to the identification of Monascus species. Lett Appl Microbiol 1:25–29

    Article  CAS  Google Scholar 

  9. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rew 66:447–459

    Article  CAS  Google Scholar 

  10. Campoy S, Rumbero A, Martín JF, Liras P (2006) Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496

    Article  PubMed  CAS  Google Scholar 

  11. Carels M, Shepherd D (1975) Sexual reproductive cycle of Monascus in submerged shaken culture. J Bacteriol 122:288–294

    PubMed  CAS  Google Scholar 

  12. Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1377

    Article  PubMed  CAS  Google Scholar 

  13. Chen F-C, Manchand PS, Whalley WB (1971) The chemistry of fungi. Part LXIV. The structure of monascin. J Chem Soc C 21:3577–3579

    Google Scholar 

  14. Chen M-H, Johns MR (1994) Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb Technol 16:584–590

    Article  CAS  Google Scholar 

  15. Chen Y-P, Tseng C-P, Chien I-L, Wang W-Y, Liaw L–L, Yuan G-F (2008) Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J Agric Food Chem 56:11762–11772

    Google Scholar 

  16. Chen Y-P, Tseng C-P, Liaw L–L, Wang W-Y, Chen I-C, Wu W-J, Wu M-D, Yuan G-F (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56:5639–5646

    Article  PubMed  CAS  Google Scholar 

  17. Cheng M-J, Wu M-D, Chen I-S, Tseng M, Yuan G-F (2011) Chemical constituents from the fungus Monascus purpureus and their antifungal activity. Phytochem Lett 4:372–376

    Article  CAS  Google Scholar 

  18. Chiu C-H, Ni K-H, Guu Y-K, Pan T-M (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297–304

    Article  PubMed  CAS  Google Scholar 

  19. Endo A (2004) The origin of the statins. Atherosclerosis Suppl 5:125–130

    Article  CAS  Google Scholar 

  20. Fielding BC, Holker JSE, Jones DF, Powell ADG, Richmond KW, Robertson A, Whalley WB (1961) The chemistry of fungi. Part XXXIX. The structure of monascin. J Chem Soc 72:4579–4589

    Article  Google Scholar 

  21. Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16[Suppl 1]:137–142

    PubMed  CAS  Google Scholar 

  22. Hadfield JR, Holker JSE, Stanway DN (1967) The biosynthesis of fungal metabolites. Part II. The β-oxo equivalents in rubropunctatin and monascorubrin. J Chem Soc C 1967:751–755

  23. Hajajj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125

    Article  Google Scholar 

  24. Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959) The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc (Resumed) 1959:3598–3610

  25. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice supplements. Am J Clin Nutr 69:231–236

    PubMed  CAS  Google Scholar 

  26. Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M (2010) Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem 58:8211–8216

    Article  PubMed  CAS  Google Scholar 

  27. Hsu L-C, Hsu Y-W, Liang Y-H, Liaw C–C, Kuo Y-H, Pan T-M (2012) Induction of apoptosis in human breast adenocarcinoma cells MCF-7 by monapurpyridine A, a new azaphilone derivative from Monascus purpureus NTU 568. Molecules 17:664–673

    Article  PubMed  CAS  Google Scholar 

  28. Huang Z, Xu Y, Li L, Yanping L (2008) Two new Monascus metabolites with strong blue fluorescence isolated from red yeast rice. J Agric Food Chem 56:112–118

    Article  PubMed  CAS  Google Scholar 

  29. Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin in the industrial important strain Monascus purpureus SM001. Metabolic Eng 12:1–7

    Article  CAS  Google Scholar 

  30. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  PubMed  CAS  Google Scholar 

  31. Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    Article  PubMed  CAS  Google Scholar 

  32. Jůzlová P, Martínková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb Technol 16:996–1001

    Article  Google Scholar 

  33. Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  Google Scholar 

  34. Kim HJ, Ji GE, Lee IH (2007) Natural occurring levels of citrinin and monakolin K in Korean Monascus fermentation products. Food Sci Biotechnol 16:142–145

    Google Scholar 

  35. Knecht A, Humpf H-U (2006) Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol Nutr Food Res 50:406–412

    Article  PubMed  CAS  Google Scholar 

  36. Kumari HPM, Naidu KA, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G (2009) Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem Toxicol 47:1739–1746

    Article  PubMed  Google Scholar 

  37. Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M (1962) Structure of monascorubrin. Tetrahedron 18:1171–1184

    Article  CAS  Google Scholar 

  38. Lai Y, Wang L, Qing L, Chen F (2011) Effects of cyclic AMP on development and secondary metabolites of Monascus ruber —7. Lett Appl Microbiol 52:420–426

    Article  PubMed  CAS  Google Scholar 

  39. Lee C-L, Pan T-M (2011) Red mold fermented products and Alzheimer`s disease: a review. Appl Microbiol Biotechnol 91:461–469

    Article  PubMed  CAS  Google Scholar 

  40. Lee C-L, Wang J–J, Kuo S-L, Pan T-M (2006) Monascus fermentation of discorea for increasing the production of cholesterol-lowering agent monacolin K and antiinflammation agent monascin. Appl Microbiol Biotechnol 72:1254–1262

    Article  PubMed  CAS  Google Scholar 

  41. Lee C-L, Chen W-P, Wang J–J, Pan T-M (2007) A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. J Agric Food Chem 55:11101–11108

    Article  PubMed  CAS  Google Scholar 

  42. Lee C-L, Kung Y-H, Wu C-L, Hsu Y-W, Pan T-M (2010) Monascin and ankaflavin act as a novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019

    Article  CAS  Google Scholar 

  43. Li Y, Xu W, Tang Y (2010) Classification, prediction and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem 285:22764–22773

    Article  PubMed  CAS  Google Scholar 

  44. Li Y-G, Zhang F, Wang Z-T, Hu Z-B (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35:1101–1112

    Article  PubMed  CAS  Google Scholar 

  45. Lin TF, Demain AL (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36:70–75

    Article  CAS  Google Scholar 

  46. Lin TF, Demain AL (1993) Resting cells studies on formation of water-soluble red pigments by Monascus sp. J Ind Microbiol 12:361–367

    Article  CAS  Google Scholar 

  47. Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigments. Arch Microbiol 162:114–119

    Article  CAS  Google Scholar 

  48. Lin TF, Demain AL (1995) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. Appl Microbiol Biotechnol 43:701–705

    Article  CAS  Google Scholar 

  49. Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    Article  CAS  Google Scholar 

  50. Lin Y-L, Wang T-H, Lee M-H, Su N-W (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    Article  PubMed  CAS  Google Scholar 

  51. Linden H (2002) A white collar protein senses blue light. Science 297:777–778

    Article  PubMed  CAS  Google Scholar 

  52. Loret M-O, Morel S (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803

    Article  PubMed  CAS  Google Scholar 

  53. Manchand PS, Whalley WB, Chen F-C (1973) Isolation and structure of ankaflavin: a new pigment from Monascus anka. Phytochemistry 12:2531–2532

    Article  CAS  Google Scholar 

  54. Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  PubMed  CAS  Google Scholar 

  55. Martínková L, Patáková P (1999) Monascus. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology. Academic Press, London, pp 1481–1487

    Chapter  Google Scholar 

  56. Martínková L, Jůzlová P, Veselý D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    Article  Google Scholar 

  57. Martínková L, Patáková-Jůzlová P, Křen V, Kučerová Z, Havlíček V, Olšovský P, Hovorka O, Říhová B, Veselý D, Veselá D, Ulrichová J, Přikrylová V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Add Cont 16:15–24

    Article  Google Scholar 

  58. Mazumder PM, Mazumder R, Mazumder A, Sasmal D (2002) Antimicrobial activity of the mycotoxin citrinin obtained from the fungus Penicillium citrinum. Anc Sci Life 21:1–6

    Google Scholar 

  59. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariayma M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108

    Article  PubMed  CAS  Google Scholar 

  60. Miyake T, Uchitomi K, Zhang M-Y, Kono I, Nozaki N, Sammoto H, Inagaki K (2006a) Effects of the principal nutrients on lovastatin production by Monascus pilosus. Biosci Biotechnol Biochem 70:1154–1159

    Article  PubMed  CAS  Google Scholar 

  61. Miyake T, Zhang M-Y, Kono I, Nozaki N, Sammoto H (2006b) Repression of secondary metabolite production by exogenous cAMP in Monascus. Biosci Biotechnol Biochem 70:1523–1524

    Google Scholar 

  62. Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197

    Article  CAS  Google Scholar 

  63. Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192

    Article  CAS  Google Scholar 

  64. Nozaki H, Date S, Kondo H, Kiyohara H, Takaoka D, Tada T, Nakayama M (1991) Ankalactone, a new α, β-unsaturated γ-lactone from Monascus anka. Agric Biol Chem 55:899–900

    Article  CAS  Google Scholar 

  65. Orozco SFB, Kilikian BV (2008) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microbiol Biotechnol 24:263–268

    Article  CAS  Google Scholar 

  66. Osmanova N, Schultze W, Ahoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342

    Article  CAS  Google Scholar 

  67. Patáková P (2005) Red yeast rice. In: McGraw-Hill Yearbook of Science and Technology, McGraw-Hill, New York, pp 286–288. ISBN 0-07-144504-8

  68. Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126:20–23

    Article  PubMed  CAS  Google Scholar 

  69. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, New York

    Book  Google Scholar 

  70. Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  PubMed  CAS  Google Scholar 

  71. Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mut Res 444:7–16

    Article  CAS  Google Scholar 

  72. Sato K, Iwakami S, Goda Y, Okuyama E, Yoshikira K, Ichi T, Odake Y, Noguchi H, Sankawa U (1992) Novel natural colorants from Monascus anka U-1. Heterocycles 34:2057–2060

    Article  CAS  Google Scholar 

  73. Schneweis I, Meyer K, Hörmansdorfer S, Bauer J (2001) Metabolites of Monascus ruber in silages. J Anim Physiol Anim Nutr 85:38–44

    Article  CAS  Google Scholar 

  74. Schümann J, Herweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703

    Article  PubMed  Google Scholar 

  75. Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light receptor for photoadaptation. EMBO J 22:4846–4855

    Article  PubMed  CAS  Google Scholar 

  76. Seenivasan A, Subhagar S, Aravindan R, Viruthagiri T (2008) Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 70:701–709

    Article  PubMed  CAS  Google Scholar 

  77. Shao Y, Xu L, Chen F (2011) Genetic diversity analysis of Monascus strains using SRAP and ISSR markers. Mycoscience 52:224–233

    Article  Google Scholar 

  78. Shepherd D (1977) The relationship between pigment production and sporulation in Monascus. In: Meyrath J, Bu`lock JD (eds) Biotechnology and fungal differentiation. FEMS Symp No 4. Academic Press, London, pp 103–118

    Google Scholar 

  79. Su Y-C, Wang J–J, Lin T–T, Pan T-M (2003) Production of the secondary metabolites γ-aminobutyric acid and monakolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46

    PubMed  CAS  Google Scholar 

  80. Velmurugan P, Lee YH, Venil CK, Lashmanaperumalsamy P, Chae J-C, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350

    Article  PubMed  CAS  Google Scholar 

  81. Wang J–J, Lee C-L, Pan T-M (2003) Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676

    Article  PubMed  CAS  Google Scholar 

  82. Wild D, Tóth G, Humpf H-U (2003) New Monascus metabolites with a pyridine structure in red fermented rice. J Agric Food Chem 51:5493–5496

    Article  PubMed  CAS  Google Scholar 

  83. Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron- and X-ray induced strains of Monascus purpureus Went. Plant Physiol 60:578–581

    Article  PubMed  CAS  Google Scholar 

  84. Wong HC, Chien C-Y (1986) Ultrastructure of sexual reproduction of Monascus purpureus. Mycologia 78:713–721

    Article  Google Scholar 

  85. Wong HC, Koehler PE (1981) Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J Food Sci 46:589–592

    Article  CAS  Google Scholar 

  86. Wu M-D, Chen M-J, Yech Y-J, Chen Y-L, Chen K-P, Chen I-S, Yang P-H, Yuan G-F (2011) Monasnicotinates A-D, four new pyridine alkaloids from the fungal strain Monascus pilosus BCRC 38093. Molecules 16:4719–4727

    Article  PubMed  CAS  Google Scholar 

  87. Xie X, Wang Y, Zhang S, Zhang G, Xu Y, Bi H, Daugherty A, Wang J-A (2012) Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. J Nutr Biochem 23:549–556

    Article  PubMed  CAS  Google Scholar 

  88. Xu B-J, Wang Q-J, Jia X-Q, Sung C-K (2005) Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol Bioproc Eng 10:78–84

    Article  CAS  Google Scholar 

  89. Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85–90

    Article  CAS  Google Scholar 

  90. Yu C–C, Wang J–J, Lee C-L, Lee S-H, Pan T-M (2008) Safety and mutagenicity evaluation of nanoparticulate red mold rice. J Agric Food Chem 56:11038–11048

    Article  PubMed  CAS  Google Scholar 

  91. Yu J-H (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44:145–154

    PubMed  CAS  Google Scholar 

  92. Zheng Y, Xin Y, Shi X, Guo Y (2010) Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523–9528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The review was performed thanks to financial support of the project BIORAF No.TE01020080 of the Technological Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Patakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patakova, P. Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40, 169–181 (2013). https://doi.org/10.1007/s10295-012-1216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1216-8

Keywords

Navigation