Skip to main content
Log in

Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Alginate lyase is a promising biocatalyst because of its application in saccharification of alginate for the production of biochemicals and renewable biofuels. This study described the isolation of a new alginate metabolizing bacterium, Flavobacterium sp. S20, from sludge samples and the characterization of its alginate lyase Alg2A. The alginate lyase gene, alg2A, was obtained by constructing and screening the genomic library of the strain S20 and overexpressed in Escherichia coli. Substrate specificity assays indicated Alg2A preferred poly-α-l-guluronate as a substrate over poly-β-d-mannuronate. In the saccharification process of a high content (10 %, w/v) of sodium alginate, the recombinant alginate lyase Alg2A yielded 152 of mM the reducing sugars after 69 h of reaction, and the amounts of oligosaccharides with a different degree of polymerization (DP) generated by Alg2A gradually accumulated without significant variation in the distribution of oligosaccharide compositions. These results indicated that Alg2A possessed high enzymatic capability for saccharifying the alginate, which could be used in saccharifying the alginate biomass prior to the main fermentation process for biofuels. In addition, Alg2A had a different endolytic reaction mode from both the two commercial alginate lyases and other alginate lyases from polysaccharide lyase family 7 owing to high yields of penta-, hex-, and hepta-saccharides in the hydrolysis products of Alg2A. Thus, Alg2A could be a good tool for the large-scale preparation of alginate oligosaccharides with high DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  2. Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–138

    Article  PubMed  CAS  Google Scholar 

  3. An QD, Zhang GL, Wu HT, Zhang ZC, Zheng GS, Zhang YL, Li XY, Murata Y (2008) Properties of an alginate-degrading Flavobacterium sp. strain LXA isolated from rotting algae from coastal China. Can J Microbiol 54:314–320

    Article  PubMed  CAS  Google Scholar 

  4. An QD, Zhang GL, Wu HT, Zhang ZC, Zheng GS, Luan L, Murata Y, Li X (2009) Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J Appl Microbiol 106:161–170

    Article  PubMed  CAS  Google Scholar 

  5. Boyen C, Bertheau Y, Barbeyron T, Kloareg B (1990) Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme Microb Technol 12:885–890

    Article  CAS  Google Scholar 

  6. Chang L, Ding MZ, Bao L, Chen YZ, Zhou JG, Lu H (2011) Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90:1933–1942

    Article  PubMed  CAS  Google Scholar 

  7. Choi DB, Piao YL, Shin WS, Cho H (2009) Production of oligosaccharide from alginate using Pseudoalteromonas agarovorans. Appl Biochem Biotechnol 159:438–452

    Article  PubMed  CAS  Google Scholar 

  8. Ertesvåg H, Valla S, Skjåk-Bræk G (2009) Enzymatic alginate modification. In: Rehm BHA (ed) Alginates: biology and applications, microbiology monographs 13. Springer, Berlin Heidelberg New York, pp 95–115

    Chapter  Google Scholar 

  9. Haug A, Larsen B, Smidsrød O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  10. Haug A, Larsen B, Smidsrød O (1967) Studies on the sequence of uronic acid residues in alginic acid. Acta Chem Scand 21:691–704

    Article  CAS  Google Scholar 

  11. Hisano T, Nishimura M, Yamashita T, Imanaka T, Muramatsu T, Kimura A, Murata K (1994) A simple method for determination of substrate specificity of alginate lyases. J Ferment Bioeng 78:182–184

    Article  CAS  Google Scholar 

  12. Horn SJ, Aasen IM, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254

    Article  CAS  Google Scholar 

  13. Iwamotoa M, Kurachia M, Nakashimaa T, Kima D, Yamaguchia K, Odaa T, Iwamotob Y, Muramatsu T (2005) Structure–activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett 579:4423–4429

    Article  Google Scholar 

  14. Iwasaki KI, Matsubara Y (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem 64:1067–1070

    Article  PubMed  CAS  Google Scholar 

  15. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Bioref 1:119–134

    Article  Google Scholar 

  16. Kim DE, Lee EY, Kim HS (2009) Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar Biotechnol 11:10–16

    Article  PubMed  CAS  Google Scholar 

  17. Kim HS, Lee C, Lee EY (2011) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng 16:843–851

    Article  CAS  Google Scholar 

  18. Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi IG, Kim KH (2012) Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2–40. Appl Microbiol Biotechnol 93:2233–2239

    Article  PubMed  CAS  Google Scholar 

  19. Kim HT, Ko HJ, Kim N, Kim D, Lee D, Choi IG, Woo HC, Kim MD, Kim KH (2012) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092

    Article  PubMed  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  21. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  22. Ma LY, Chi ZM, Li J, Wu LF (2008) Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J Microbiol Biotechnol 24:89–96

    Article  CAS  Google Scholar 

  23. Matsubara Y, Kawada R, Iwasaki K, Oda T, Muramatsu T (1998) Extracellular poly (α-l-guluronate) lyase from Corynebacterium sp.: purification, characteristics, and conformational properties. J Protein Chem 17:29–36

    Article  PubMed  CAS  Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  25. Moreira ASP, Coimbra MA, Nunes FM, Simões J, Domingues MRM (2011) Evaluation of the effect of roasting on the structure of coffee galactomannans using model oligosaccharides. J Agric Food Chem 59:10078–10087

    Article  PubMed  CAS  Google Scholar 

  26. Ochi Y, Takeuchi T, Murata K, Kawabata Y, Kusakabe I (1995) A simple method for preparation of poly-mannuronate using poly-guluronate lyase. Biosci Biotech Biochem 59:1560–1561

    Article  CAS  Google Scholar 

  27. Østgaard K (1993) Determination of alginate composition by a simple enzymatic assay. Hydrobiologia 260/261::513–520

    Article  Google Scholar 

  28. Ryu M, Lee EY (2011) Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. J Ind Eng Chem 17:853–858

    Article  CAS  Google Scholar 

  29. Sawabe T, Ohtsuka M, Ezura Y (1997) Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr Res 304:69–76

    Article  PubMed  CAS  Google Scholar 

  30. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land-based fuels. Bioresour Technol 102:10–16

    Article  PubMed  CAS  Google Scholar 

  31. Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4:2575–2581

    Article  CAS  Google Scholar 

  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  33. Tusi SK, Khalaj L, Ashabi G, Kiaei M, Khodagholi F (2011) Alginate oligosaccharide protects against endoplasmic reticulum and mitochondrial mediated apoptotic cell death and oxidative stress. Biomaterials 32:5438–5458

    Article  PubMed  CAS  Google Scholar 

  34. Unterieser I, Cuers J, Voiges K, Enebro J, Mischnick P (2011) Quantitative aspects in electrospray ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of malto-oligosaccharides. Rapid Commun Mass Spectrom 25:2201–2208

    Article  PubMed  CAS  Google Scholar 

  35. Vroagen AGJ, Schols HA, Devries JA (1982) High-performance liquid chromatography analysis of uronic acid and oligogalacturonic acids. J Chromatogr 244:327–336

    Article  Google Scholar 

  36. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  PubMed  CAS  Google Scholar 

  37. Wong TY, Preston LA, Schiller NL (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles and applications. Annu Rev Microbiol 54:289–340

    Article  PubMed  CAS  Google Scholar 

  38. Yamasaki M, Moriwaki S, Miyake O, Hashimoto W, Murata K, Mikami B (2004) Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7. J Biol Chem 279:31863–31872

    Article  PubMed  CAS  Google Scholar 

  39. Yoon HJ, Hashimoto W, Miyake O, Okamoto M, Mikami B, Murata K (2000) Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expression Purif 19:84–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was granted by Chinese High-tech Research and Development program (2011AA090704 and 2012AA021501), the National Department Public Benefit Research Foundation of China (200903052), and the Liaoning Doctoral Startup Project (20111150). We thank Dr. Bo Shi, Feed Research Institute Chinese Academy of Agricultural Sciences, for his technical guidance in preparation of alginate block structures. We also thank Dr. Zhongfu Wang and Dr. Linjuan Huang, Northwest University, for their guidance of analyzing the ESI–MS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungang Zhou or Yuguang Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Zhou, J., Li, X. et al. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J Ind Microbiol Biotechnol 40, 113–122 (2013). https://doi.org/10.1007/s10295-012-1210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1210-1

Keywords

Navigation