Skip to main content
Log in

Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions

Journal of Industrial Microbiology & Biotechnology

Abstract

Changes in the cell surface hydrophobicity (CSH) of probiotic bacteria Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 and the survival of these cells were examined in response to varied cultivation conditions and adverse environmental conditions. An inverse linear relationship (P < 0.01) was detected between the CSH of intact L. acidophilus La5 and B. lactis Bb12 and survival of cells subjected to subsequent freezing/thawing, long-term storage or exposure to mineral and bile acids. The observed relationships were supported by significant correlations between the CSH and changes in composition of the cell envelopes (proteins, lipids and carbohydrates) of L. acidophilus La5 and B. lactis Bb12 examined using FT-IR spectroscopy and conventional biochemical analysis methods. The results also suggest that the estimates of hydrophobicity, being a generalized characteristic of cell surfaces, are important parameters to predict the ability of intact probiotic bacteria to endure extreme environments and therefore should be monitored during cultivation. A defined balance of cell components, which can be characterized by the reduced CSH values, apparently helps to ensure the resistance, improved viability and hence the overall probiotic properties of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63:3637–3642

    PubMed  CAS  Google Scholar 

  2. Bâati L, Fabre-Gea C, Auriol D, Blanc PJ (2000) Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol 59:241–247

    Article  PubMed  Google Scholar 

  3. Bartlett GR (1972) General methods of analysis. In: Kates M (ed) Techniques of lipidology isolation, analysis and identification of lipids. Elsevier, New York, pp 78–80

    Google Scholar 

  4. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 4:625–651

    Article  Google Scholar 

  5. Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O (2006) Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbial Cell Physiol 71:736–747

    CAS  Google Scholar 

  6. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  PubMed  Google Scholar 

  7. de los Reyes-Gavilán CG, Ruas-Madiedo P, Noriega L, Cuevas I, Sánchez B, Margolles A (2005) Effect of acquired resistence to bile salts on enzymatic activities involved in the utilisation of carbohydrates by bifidobateria. An overview. Le Lait Dairy Sci Technol 85:113–123

    Article  Google Scholar 

  8. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Ant van Leeuwenhoek 76:159–184

    Article  CAS  Google Scholar 

  9. Geertsema-Doornbusch GI, van der Mei HC, Busscher HJ (1993) Microbial cell surface hydrophobicity. The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Meth 18:61–68

    Article  Google Scholar 

  10. Harrigan GG, LaPlante RH, Cosma GN, Cockerell G, Goodacre R, Maddox JF, Ludyenck JP, Ganey PE, Roth RA (2004) Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol Lett 146:197–205

    Article  PubMed  CAS  Google Scholar 

  11. Helm D, Naumann D (1995) Identification of some bacterial cell components by FT-IR spectroscopy. FEMS Microbiol Lett 126:75–80

    CAS  Google Scholar 

  12. Huang WE, Hopper D, Goodacre R, Beckmann M, Singer A, Draper J (2006) Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. J Microbiol Meth 67:273–280

    Article  CAS  Google Scholar 

  13. Ikawa M, Snell EE (1960) Cell wall composition of lactic acid bacteria. J Bacteriol Chem 235:1376–1382

    CAS  Google Scholar 

  14. Kabadjova-Hristova P, Bakalova S, Gocheva B, Moncheva P (2006) Evidence for proteolytic activity of lactobacilli isolated from kefir grains. Biotechnol Biotechnol Equip 20:89–94

    Google Scholar 

  15. Karimi Torshizi MA, Rahimi Sh, Mojgani N, Esmaeilkhanian S, Grimes JL (2008) Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian Aust J Anim Sci 21:1495–1500

    Google Scholar 

  16. Kimoto-Nira H, Suzuki C, Sasaki K, Kobayashi M, Mizumachi K (2010) Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. Int J Food Microbiol 143:226–229

    Article  PubMed  CAS  Google Scholar 

  17. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    Article  PubMed  CAS  Google Scholar 

  18. Kumar M, Dhillon S, Singhal A, Sood A, Ghosh M, Ganguli A (2011) Cell surface and stress tolerance properties of a newly isolated Lactobacillus plantarum CH1. Acta Alimentaria 40:38–44

    Article  Google Scholar 

  19. Kunitz M (1947) Crystalline soybean trypsin inhibitor: II. General properties. J Gen Physiol 30:291–310

    Article  PubMed  CAS  Google Scholar 

  20. Ljungh Å, Wadström T (2006) Lactic acid bacteria as probiotics. Curr Iss Intest Microbiol 7:73–90

    CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  22. Majidzadeh Heravi R, Kermanshahi H, Sankian M, Nassiri MR, Heravi Moussavi A, Roozbeh Nasirali L, Varasteh AR (2011) Screening of lactobacilli bacteria isolated from gastrointestinal tract of broiler chickens for their use as probiotics. Afr J Microbiol Res 5:1858–1868

    Article  Google Scholar 

  23. Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    Article  CAS  Google Scholar 

  24. Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Sci 107:254–255

    Article  CAS  Google Scholar 

  25. Naumann D (2002) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131

    Google Scholar 

  26. Olejnik A, Lewandowska M, Obarska M, Grajek W (2005) Tolerace of Lactobacillus and Bifidobacterium strains to low pH, bile salts and digestive enzymes. Electron J Polish Agric Univ 8:5

    Google Scholar 

  27. Orłowski A, Bielecka M (2006) Preliminary characteristics of Lactobacillus and Bifidobacterium strains as probiotic candidates. Polish J Food Nutr Sci 15:269–275

    Google Scholar 

  28. Pembrey RS, Marshall KC, Schmider RP (1999) Cell surface analisis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol 65:1877–1894

    Google Scholar 

  29. Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    Article  PubMed  CAS  Google Scholar 

  30. Rosenberg M, Doyle RJ (1990) Microbial cell surface hydrophobicity: history, measurement, and significance. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, DC, pp 1–37

    Google Scholar 

  31. Schar-Zammaretti P, Ubbink J (2003) The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 85:4076–4092

    Article  PubMed  Google Scholar 

  32. Schar-Zammaretti P, Dillmann ML, D’Amico N, Affolter M, Ubbink J (2005) Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl Environ Microbiol 71:65–73

    Article  Google Scholar 

  33. Semjonovs P, Jasko J, Auzina L, Zikmanis P (2008) The use of exopolysaccharide-producting cultures of lactic acid bacteria to improve the functional value of fermented foods. J Food Technol 6:101–109

    CAS  Google Scholar 

  34. Shakirova L, Auzina L, Grube M, Zikmanis P (2008) Relationship between the cell surface hydrophobicity and survival of bacteria Zymomonas mobilis after exposures to ethanol, freezing or freeze-drying. J Ind Microbiol Biotechnol 35:1175–1180. doi:10.1007/s10295-008-0397-7

    Article  PubMed  CAS  Google Scholar 

  35. Shakirova L, Auzina L, Zikmanis P, Gavare M, Grube M (2010) Influence of growth conditions on hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis cells and characteristics by FT-IR spectra. Spectroscopy 24:251–255. doi:10.3233/SPE-2010-0470

    Article  Google Scholar 

  36. Shakirova L, Grube M, Goodacre R, Gavare M, Auzina L, Zikmanis P (2012) FT-IR spectroscopic investigation of bacterial cell envelopes from Zymomonas mobilis which have different surface hydrophobicities. Vibrat Spectroscopy (under review)

  37. Shalini J, Hariom Y (2009) Probiotic attributes of lactic acid bacteria isolates. Available via Protocol Online. http://www.protocol-online.org/prot/Protocols/Probiotic-Attributes-of-Lactic-Acid-Bacteria-Isolates-3463.html. Accessed 4 Oct 2012

  38. Talwalkar A, Kailasapathy K (2004) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5:1–8

    PubMed  CAS  Google Scholar 

  39. Vadillo-Rodríguez V, Busscher HJ, Norde W, de Vries J, van der Mei HC (2004) Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. J Bacteriol 186:6647–6650

    Article  PubMed  Google Scholar 

  40. Vanhaecke E, Remon JP, Moors M, Raes F, de Rudder D, van Peteghem A (1990) Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity. Appl Environ Microbiol 56:788–795

    PubMed  CAS  Google Scholar 

  41. Wallinder IB, Neujahr HY (1971) Cell wall and peptidoglycan from Lactobacillus fermenti. J Bacteriol 105:918–926

    PubMed  CAS  Google Scholar 

  42. Wang H, Hollywood K, Jarvis RM, Lloyd JR, Goodacre R (2010) Phenotypic characterization of Shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using Fourier transform infrared spectroscopy and high-performance liquid chromatography analyses. Appl Environ Microbiol 76:6266–6276

    Article  PubMed  CAS  Google Scholar 

  43. Zikmanis P, Shakirova L, Auzina L, Andersone I (2007) Hydrophobicity of bacteria Zymomonas mobilis under varied environmental conditions. Proc Biochem 42:745–750. doi:10.1016/j.procbio.2007.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laisana Shakirova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakirova, L., Grube, M., Gavare, M. et al. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions. J Ind Microbiol Biotechnol 40, 85–93 (2013). https://doi.org/10.1007/s10295-012-1204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1204-z

Keywords

Navigation