Skip to main content
Log in

Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis

Journal of Industrial Microbiology & Biotechnology

Abstract

In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l−1 of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l−1 were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0–8.0 and temperatures of 47–50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bertasso M, Silveira MM, Mancilha IM (1996) Preservação da atividade da enzima glicose-frutose oxidorredutase em células imobilizadas de Zymomonas mobilis. In: Simpósio Nacional de Fermentações, 11th, São Carlos, Brazil

  2. Budavari S, O’neil MJ, Smith A, Heckelman PE, Kinneary JF (eds) (1996) The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 12th edn. Whitehouse Station, Merck & Co

    Google Scholar 

  3. Chun UH, Rogers PL (1988) The simultaneous production of sorbitol and gluconic acid by Zymomonas mobilis. Appl Microbiol Biotechnol 29:19–24

    Article  CAS  Google Scholar 

  4. Erzinger GS, Silveira MM, Costa JPC, Vitolo M, Jonas R (2003) Activity of glucose-fructose oxidoreductase in fresh and permeabilised cells of Zymomonas mobilis grown in different glucose concentrations. Braz J Microbiol 34:329–333

    Article  CAS  Google Scholar 

  5. Erzinger GS, Vitolo M (2006) Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid. Appl Biochem Biotechnol 131:787–794

    Article  PubMed  Google Scholar 

  6. Ferraz HC, Borges CP, Alves TLM (2000) Sorbitol and gluconic acid production using permeabilized Zymomonas mobilis cells confined by hollow-fiber membranes. Appl Biochem Biotechnol 89:43–53

    Article  PubMed  CAS  Google Scholar 

  7. Gollhofer D, Nidetzky B, Fürlinger M, Kulbe KD (1995) Efficient protection of glucose-fructose oxidoreductase from Zymomonas mobilis against irreversible inactivation during its catalytic action. Enzyme Microb Technol 17:235–240

    Article  CAS  Google Scholar 

  8. Green BA, Yu RJ, Van Scott EJ (2009) Clinical and cosmeceutical uses of hydroxyacids. Clin Dermatol 27:495–501

    Article  PubMed  Google Scholar 

  9. Grimes PE, Green BA, Wildnauer RH, Edison BL (2004) The use of polyhydroxy acid (PHAs) in photoaged skin. Cutis 73:3–13

    PubMed  Google Scholar 

  10. Jang K, Jung SJ, Chang HS, Chun U (1996) Improvement of the process for sorbitol production with Zymomonas mobilis immobilized in k-carrageenan. Process Biochem 31:485–492

    Article  CAS  Google Scholar 

  11. Jonas R, Silveira MM (2004) Sorbitol can be produced not only chemically but also biotechnologically. Appl Microbiol Biotechnol 118:321–335

    CAS  Google Scholar 

  12. Lin WJ, Chen TD, Liu CW (2009) Synthesis and characterization of lactobionic acid and grafted pegylated chitosan and nanoparticle complex application. Polymer 50:4166–4174

    Article  CAS  Google Scholar 

  13. Machado JBB, Coutinho JA, Macedo EA (2000) Solid–liquid equilibrium of α-lactose in ethanol/water. Fluid Phase Equilib 173:121–134

    Article  CAS  Google Scholar 

  14. Malvessi E, Carra S, Silveira MM, Ayub MAZ (2010) Effect of substrate concentration, pH, and temperature on the activity of the complex glucose-fructose oxidoreductase/glucono-δ-lactonase present in calcium alginate-immobilized Zymomonas mobilis cells. Biochem Eng J 51:1–6

    Article  CAS  Google Scholar 

  15. Malvessi E, Concatto K, Carra S, Silveira MM (2006) Formulation of medium for growth and production of ethanol and intracellular enzymes by Zymomonas mobilis. Braz Arch Biol Technol 49:139–144

    CAS  Google Scholar 

  16. Mateo CM, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  17. Nidetzky B, Fürlinger M, Gollhofer D, Scopes RK, Haltrich D, Kulbe KD (1997) Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membrane reactor. Biotechnol Bioeng 53:623–629

    Article  PubMed  CAS  Google Scholar 

  18. Pedruzzi I, Malvessi E, Mata GV, Silva EA, Silveira MM, Rodrigues AE (2007) Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. J Chromatogr A 1145:128–132

    Article  PubMed  CAS  Google Scholar 

  19. Pedruzzi I, Silva EAB, Rodrigues AE (2011) Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzyme Microb Technol 49:183–191

    Article  PubMed  CAS  Google Scholar 

  20. Rehr B, Wilhelm C, Sahm H (1991) Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol 35:144–148

    Article  CAS  Google Scholar 

  21. Satory M, Fürlinger M, Haltrich D, Kulbe KD, Pittner F, Nidetzky B (1997) Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an membrane reactor. Biotechnol Lett 19:1205–1208

    Article  CAS  Google Scholar 

  22. Severo Júnior JB, Pinto JC, Ferraz HC, Alves TLM (2011) Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 38:1575–1585

    Article  Google Scholar 

  23. Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  PubMed  CAS  Google Scholar 

  24. Silveira MM, Wisbeck E, Lemmel C, Erzinger GS, Costa JPL, Bertasso M, Jonas R (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    Article  PubMed  CAS  Google Scholar 

  25. Southard JH, Belzer FO (1995) Organ preservation. Annu Rev Med 46:235–247

    Article  PubMed  CAS  Google Scholar 

  26. Sumimoto R, Kamada N (1990) Lactobionate as the most important component in UW solution for liver preservation. Transplant Proceed 22:2198–2199

    CAS  Google Scholar 

  27. Tasic-Kostov M, Savic S, Lukic M, Tamburic S, Pavlovic M, Vuleta G (2010) Lactobionic acid in a natural alkylpolyglucoside-based vehicle: assessing safety and efficacy aspects in comparison to glycolic acid. J Cosmetis Dermatol 9:3–10

    Article  Google Scholar 

  28. Vogel R (2003) Sorbitol. In: Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley-VCH, vol 34. Weinheim, pp 492–498. ISBN 3-527-30385-5

  29. Wu DQ, Lu B, Chang C, Chen CS, Wang T, Zhang YY, Chung SX, Jiang XJ, Zhang XZ, Zhuo RX (2009) Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 30:1363–1371

    Article  PubMed  CAS  Google Scholar 

  30. Yu RJ, Van Scott EJ (2004) Alpha-hydroxyacids and carboxylic acids. J Cosmetic Dermatol 3:76–87

    Article  Google Scholar 

  31. Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 3:863–869

    Google Scholar 

  32. Zanin GM, Moraes FF (2004) Enzimas imobilizadas. In: Said S, Pietro RCLR (eds) Enzimas como agentes biotecnológicos. Legis Summa, Ribeirão Preto, pp 35–85

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank CNPq, FAPERGS, UCS, and UFRGS for their financial support and scholarships for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eloane Malvessi, Mauricio Moura da Silveira or Marco Antônio Záchia Ayub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malvessi, E., Carra, S., Pasquali, F.C. et al. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis . J Ind Microbiol Biotechnol 40, 1–10 (2013). https://doi.org/10.1007/s10295-012-1198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1198-6

Keywords

Navigation