Skip to main content
Log in

Wine flavor and aroma

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of “terroir” (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  PubMed  CAS  Google Scholar 

  2. Almy J, De Revel G (2008) Approaches to wine aroma: C1 transfer during the reaction between diacetyl and cysteine. Ann NY Acad Sci 1126:216–219

    Article  PubMed  CAS  Google Scholar 

  3. Antonelli A, Castellari L, Zambonelli C, Carnacini A (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47:1139–1144

    Article  PubMed  CAS  Google Scholar 

  4. Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Advances 24:238–242

    Article  CAS  Google Scholar 

  5. Arevalo Villena M, Ubeda J, Cordero Otero RR, Briones A (2005) Optimization of a rapid method for studying the cellular location of β-glucosidase activity in wine yeasts. J Appl Microbiol 99:558–564

    Article  PubMed  CAS  Google Scholar 

  6. Barbe J-C, Pineau B, Silva Ferreira A (2008) Instrumental and sensory approaches for the characterization of compounds responsible for wine aroma. Chem Biodiv 5:1170–1183

    Article  CAS  Google Scholar 

  7. Bardi L, Cocito C, Marzona M (1999) Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in absence of exogenous lipids. Int J Food Microbiol 47:133–140

    Article  PubMed  CAS  Google Scholar 

  8. Bartowsky E, Henschke P (2004) The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  PubMed  CAS  Google Scholar 

  9. Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  10. Ben-Yosef T, Eden A, Benvenisty N (1998) Characterization of murine BCAT genes: Bcat1, a c-Myc target, and its homolog, Bcat2. Mamm Genome 9:595–597

    Article  PubMed  CAS  Google Scholar 

  11. Bloem A, Bertrand A, Lonvaud-Funel A, de Revel G (2007) Vanillin production from simple phenols by wine-associated lactic acid bacteria. Lett Appl Microbiol 44:62–67

    Article  PubMed  CAS  Google Scholar 

  12. Bloem A, Lonvaud-Funel A, de Revel G (2008) Hydrolysis of glycosidically bound flavour compounds from oak wood by Oenococcus oeni. Food Microbiol 25:99–104

    Article  PubMed  CAS  Google Scholar 

  13. Boido E, Lloret A, Medina K, Carrau F, Dellacassa E (2002) Effect of β-glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J Agric Food Chem 50:2344–2349

    Article  PubMed  CAS  Google Scholar 

  14. Boido E, Medina K, Farina L, Carrau F, Versini G, Dellacassa E (2009) The effect of bacterial strain and aging on the secondary volatile metabolites produced during malolactic fermentation of Tannat red wine. J Agric Food Chem 57:6271–6278

    Article  PubMed  CAS  Google Scholar 

  15. Bonino M, Schellino R, Rizzi C, Aigotti R, Delfini C, Baiocchi C (2003) Aroma compounds of an Italian wine (Ruche) by HS–SPME analysis coupled with GC–ITMS. Food Chem 80:125–133

    Article  CAS  Google Scholar 

  16. Butzke C, Park SK (2011) Impact of fermentation rate changes on potential hydrogen sulfide concentrations in wine. J Microbiol Biotech 21:519–524

    Article  CAS  Google Scholar 

  17. Cadahía E, Fernandez de Simón B, Sanz M, Poveda P, Colio J (2009) Chemical and chromatic characteristics of Tempranillo, Cabernet Sauvignon and Merlot wines from DO Navarra aged in Spanish and French oak barrels. Food Chem 115:639–649

    Article  CAS  Google Scholar 

  18. Campo E, Cacho J, Ferreira V (2006) Multidimensional chromatographic approach applied to the identification of novel aroma compounds in wine: identification of ethyl cyclohexanoate, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-methylpentanoate. J Chromatogr A 1137:223–230

    Article  PubMed  CAS  Google Scholar 

  19. Campo E, Ferreira V, Lopez R, Escudero A, Cacho J (2006) Identification of three novel compounds in wine by means of a laboratory-constructed multidimensional gas chromatographic system. J Chromatogr A 1122:202–208

    Article  PubMed  CAS  Google Scholar 

  20. Carrau F, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke P (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115

    Article  PubMed  CAS  Google Scholar 

  21. Carrau F, Medina K, Farina L, Boido E, Henschke P, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207

    Article  PubMed  CAS  Google Scholar 

  22. Chassagne D, Guilloux-Benatier M, Alexandre H, Voilley A (2005) Sorption of wine volatile phenols by yeast lees. Food Chem 91:39–44

    Article  CAS  Google Scholar 

  23. Chen EC-H (1977) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39–43

    Google Scholar 

  24. Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    Article  PubMed  CAS  Google Scholar 

  25. Cocito C, Gaetano G, Delfini C (1995) Rapid extraction of aroma compounds in must and wine by means of ultrasound. Food Chem 52:311–320

    Article  CAS  Google Scholar 

  26. Comuzzo P, Tat L, Tonizzo A, Battistutta F (2006) Yeast derivatives (extracts and autolysates) in winemaking: release of volatile compounds and effects on wine aroma volatility. Food Chem 99:217–230

    Article  CAS  Google Scholar 

  27. Conway ME, Hutson SM (2000) Mammalian branched-chain aminotransferases. Methods Enzymol 324:355–365

    Article  PubMed  CAS  Google Scholar 

  28. Davoodi J, Drown PM, Bledsoe RK, Wallin R, Reinhart GD, Hutson SM (1998) Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. J Biol Chem 273:4982–4989

    Article  PubMed  CAS  Google Scholar 

  29. de Orduña RM (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855

    Article  CAS  Google Scholar 

  30. de Revel G, Martin N, Pripis-Nicolau L, Lonvaud-Funel A, Bertrand A (1999) Contribution to the knowledge of malolactic fermentation influence on wine aroma. J Agric Food Chem 47:4003–4008

    Article  PubMed  CAS  Google Scholar 

  31. Delfini C, Cocito C, Bonino M, Schellino R, Gaia P, Baiocchi C (2001) Definitive evidence for the actual contribution of yeast in the transformation of neutral precursors of grape aromas. J Agric Food Chem 49:5397–5408

    Article  PubMed  CAS  Google Scholar 

  32. Diaz-Maroto M, Schneider R, Baumes R (2005) Formation pathways of ethyl esters of branched short-chain fatty acids during wine aging. J Agric Food Chem 53:3503–3509

    Article  PubMed  CAS  Google Scholar 

  33. Dickinson JR, Lanterman M, Danner D, Pearson B, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  PubMed  CAS  Google Scholar 

  34. Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326:29–32

    Article  PubMed  CAS  Google Scholar 

  35. Dickinson JR, Salgado L, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    Article  PubMed  CAS  Google Scholar 

  36. Drewnowski A, Ahlstrom Henderson S, Barratt-Fornell A (2001) Genetic taste markers and food preferences. Drug Metab Disp 29:535–538

    CAS  Google Scholar 

  37. Dupin IVS, McKinnon BM, Ryan C, Boulay M, Markides AJ, Jones GP, Williams PJ, Waters EJ (2000) Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: their release during fermentation and lees contact and a proposal for their mechanism of action. J Agric Food Chem 48:3098–3105

    Article  PubMed  CAS  Google Scholar 

  38. Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    Article  PubMed  CAS  Google Scholar 

  39. Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    Article  PubMed  CAS  Google Scholar 

  40. Ehrlich F (1904) Uber das naturliche Isomere des Leucins. Ber Dtsch Chem Ges 37:1809–1840

    Article  CAS  Google Scholar 

  41. Estevez P, Gil M, Falque E (2004) Effects of seven yeast strains on the volatile composition of Palomino wines. Int J Food Sci Technol 39:61–69

    Article  CAS  Google Scholar 

  42. Fenoll J, Manso A, Hellin P, Ruiz L, Flores P (2009) Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem 114:420–428

    Article  CAS  Google Scholar 

  43. Fernandez-Gonzalez M, Ubeda J, Cordero Otero RR, Thanvantri Gururajan V, Briones A (2005) Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine. Int J Food Microbiol 102:173–183

    Article  PubMed  CAS  Google Scholar 

  44. Ferreira V, Jarauta I, Cacho J (2006) Physicochemical model to interpret the kinetics of aroma extraction during wine aging in wood. Model limitations suggest the necessary existence of biochemical processes. J Agric Food Chem 54:3047–3054

    Article  PubMed  CAS  Google Scholar 

  45. Flamini R (2005) Some advances in the knowledge of grape, wine and distillates chemistry as achieved by mass spectrometry. J Mass Spectrom 40:705–713

    Article  PubMed  CAS  Google Scholar 

  46. Fleet G (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  PubMed  CAS  Google Scholar 

  47. Fleet G (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  PubMed  CAS  Google Scholar 

  48. Garde-Cerdan T, Ancin-Azpilicueta C (2008) Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT 41:501–510

    Article  CAS  Google Scholar 

  49. Genovese A, Piombino P, Gambuti G, Moio L (2009) Simulation of retronasal aroma of white and red wine in a model mouth system. Investigating the influence of saliva on volatile compound concentrations. Food Chem 114:100–107

    Article  CAS  Google Scholar 

  50. Gil J, Manzanares P, Genoves S, Valles S, Gonzalez-Candelas L (2005) Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int J Food Microbiol 103:57–68

    Article  PubMed  CAS  Google Scholar 

  51. Goldner MC, Zamora M, Di Leo Lira P, Gianninoto H, Bandoni A (2009) Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. J Sens Stud 24:243–257

    Article  Google Scholar 

  52. Gonzalez S, Gallo L, Climent M, Barrio E, Querol A (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int J Food Microbiol 116:11–18

    Article  PubMed  CAS  Google Scholar 

  53. Grimaldi A, Bartowsky E, Jiranek V (2005) A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int J Food Microbiol 105:233–244

    Article  PubMed  CAS  Google Scholar 

  54. Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:533–545

    Article  PubMed  CAS  Google Scholar 

  55. Hadley K, Orlandi R, Fong K (2004) Basic anatomy and physiology of olfaction and taste. Otolaryngol Clin N Am 37:1115–1126

    Article  Google Scholar 

  56. Hallsworth JE (1998) Ethanol-induced water stress in yeast. J Ferment Bioeng 85:125–137

    Article  CAS  Google Scholar 

  57. Halpern B (1982) Environmental factors affecting chemoreceptors: an overview. Environ Health Perspec 44:101–105

    Article  CAS  Google Scholar 

  58. Hazelwood L, Daran JM, Van Maris AJ, Pronk JT, Dickinson JA (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  PubMed  CAS  Google Scholar 

  59. Hernandez-Orte P, Cacho J, Ferreira V (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J Agric Food Chem 50:2891–2899

    Article  PubMed  CAS  Google Scholar 

  60. Hernandez-Orte P, Cersosimo M, Loscos N, Cacho J, Garcia-Moruno E, Ferreira V (2008) The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem 107:1064–1077

    Article  CAS  Google Scholar 

  61. Hernandez-Orte P, Ibarz M, Cacho J, Ferreira V (2005) Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem 89:163–174

    Article  CAS  Google Scholar 

  62. Hernandez-Orte P, Ibarz M, Cacho J, Ferreira V (2006) Addition of amino acids to grape juice of the Merlot variety: effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem 98:300–310

    Article  CAS  Google Scholar 

  63. Hernandez L, Espinosa J, Fernandez-Gonzalez M, Briones A (2003) β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int J Food Microbiol 80:171–176

    Article  PubMed  CAS  Google Scholar 

  64. Hernanz D, Gallo V, Recamales A, Melendez-Martinez A, Gonzalez-Miret M, Heredia F (2009) Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chem 113:530–537

    Article  CAS  Google Scholar 

  65. Iraqui I, Vissers S, Andrè B, Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19:3360–3371

    PubMed  CAS  Google Scholar 

  66. Iriti M, Faoro F (2006) Grape phytochemicals: a bouquet of old and new nutraceuticals for human health. Med Hypoth 67:833–838

    Article  CAS  Google Scholar 

  67. Jansen M, Veurink JH, Euverink GJ, Dijkhuizen L (2003) Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS Yeast Res 3:313–318

    PubMed  CAS  Google Scholar 

  68. Jarauta I, Cacho J, Ferreira V (2005) Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: an analytical study. J Agric Food Chem 53:4166–4177

    Article  PubMed  CAS  Google Scholar 

  69. Jimenez-Marti E, Aranda A, Mendes-Ferreira A, Mendes-Faia A, Li del Olmo M (2007) The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds. Antonie van Leeuwenhoek 92:61–75

    Article  PubMed  CAS  Google Scholar 

  70. Jimenez J, Benitez T (1987) Adaptation of yeast cell membranes to ethanol. Appl Environ Microbiol 53:1196–1198

    PubMed  CAS  Google Scholar 

  71. Jolly N, Augustyn O, Pretorius IS (2003) The effect of non-Saccharomyces yeasts on fermentation and wine quality. S Afr J Eno Vitic 24:55–62

    CAS  Google Scholar 

  72. Jolly N, Augustyn O, Pretorius IS (2006) The role and use of non-Saccharomyces yeasts in wine production. S Afr J Eno Vitic 27:15–39

    CAS  Google Scholar 

  73. Jones PR, Gawel R, Francis I, Waters EJ (2008) The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual Prefer 19:596–607

    Article  Google Scholar 

  74. Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    Article  PubMed  CAS  Google Scholar 

  75. Kotseridis Y, Baumes R (2000) Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J Agric Food Chem 48:400–406

    Article  PubMed  CAS  Google Scholar 

  76. Lachenmeier D, Sohnius E-M (2008) The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Tox 46:2903–2911

    Article  CAS  Google Scholar 

  77. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  78. Lambropoulus I, Roussis I (2007) Inhibition of the decrease of volatile esters and terpenes during storage of a white wine and a model wine medium by caffeic acid and gallic acid. Food Res Int 40:176–181

    Article  CAS  Google Scholar 

  79. Le Berre E, Atanasova B, Langlois D, Etievant P, Thomas-Danguin T (2007) Impact of ethanol on the perception of wine odorant mixtures. Food Qual Prefer 18:901–908

    Article  Google Scholar 

  80. Lee S-J, Rathbone D, Asimont S, Adden R, Ebeler S (2004) Dynamic changes in ester formation during Chardonnay juice fermentations with different yeast inoculation and initial Brix conditions. Am J Enol Vitic 55:346–354

    CAS  Google Scholar 

  81. Leffingwell J, Leffingwell D (1991) GRAS flavor chemicals—detection thresholds. Perf Flav 16:2–19

    Google Scholar 

  82. Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726–743

    Article  PubMed  CAS  Google Scholar 

  83. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  PubMed  CAS  Google Scholar 

  84. Linderholm AL, Dietzel K, Hirst M, Bisson LF (2010) Identification of MET10–932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 76:7699–7707

    Article  PubMed  CAS  Google Scholar 

  85. Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF (2008) Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 74:1418–1427

    Article  PubMed  CAS  Google Scholar 

  86. Liu S-Q (2002) Malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92:589–601

    Article  PubMed  CAS  Google Scholar 

  87. Liu S-Q, Pilone G (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  88. Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7:953–965

    Article  PubMed  CAS  Google Scholar 

  89. Loscos N, Hernandez-Orte P, Cacho J, Ferreira V (2007) Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J Agric Food Chem 55:6674–6684

    Article  PubMed  CAS  Google Scholar 

  90. Lubbers S, Verret C, Voilley A (2001) The effect of glycerol on the perceived aroma of a model wine and a white wine. Lebensm Wiss Technol 34:262–265

    Article  CAS  Google Scholar 

  91. Malherbe D, du Toit M, Cordero Otero RR, Van Rensburg P, Pretorius IS (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61:502–511

    PubMed  CAS  Google Scholar 

  92. Mallouchos A, Komaitis M, Koutinas A, Kanellaki M (2002) Investigation of volatiles evolution during the alcoholic fermentation of grape must using free and immobilized cells with the help of solid phase microextraction (SPME) headspace sampling. J Agric Food Chem 50:3840–3848

    Article  PubMed  CAS  Google Scholar 

  93. Mamede M, Cardello H, Pastore G (2005) Evaluation of an aroma similar to that of sparkling wine: sensory and gas chromatography analyses of fermented grape musts. Food Chem 89:63–68

    Article  CAS  Google Scholar 

  94. Marchand S, de Revel G, Bertrand A (2000) Approaches to wine aroma: release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J Agric Food Chem 48:4890–4895

    Article  PubMed  CAS  Google Scholar 

  95. Martinez-Rodriguez A, Carrascosa A, Martin-Alvarez P, Moreno-Arribas V, Polo M (2002) Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method. J Ind Microbiol Biotechnol 29:314–322

    Article  PubMed  CAS  Google Scholar 

  96. Martınez-Rodrıguez AJ, Polo M (2000) Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J Agric Food Chem 48:1081–1085

    Article  PubMed  CAS  Google Scholar 

  97. Martınez-Rodrıguez AJ, Polo M, Carrascosa AV (2001) Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines. Int J Food Microbiol 71:45–51

    Article  PubMed  Google Scholar 

  98. Marullo P, Bely M, Masneuf-Pomarede I, Pons M, Aigle M, Dubourdieu D (2006) Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res 6:268–279

    Article  PubMed  CAS  Google Scholar 

  99. Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, Dubourdieu D (2009) Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res 9:1148–1160

    Article  PubMed  CAS  Google Scholar 

  100. Mateo J, Gentilini N, Huerta T, Jimenez M, Di Stefano R (1997) Fractionation of glycoside precursors of aroma in grapes and wine. J Chromatogr A 778:219–224

    Article  PubMed  CAS  Google Scholar 

  101. Mateo J, Jimenez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  PubMed  CAS  Google Scholar 

  102. Mazauric J-P, Salmon J-P (2005) Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. J Agric Food Chem 53:5647–5653

    Article  PubMed  CAS  Google Scholar 

  103. Mendes-Ferreira A, Barbosa C, Jimenez-Marti E, del Olmo M, Mendes Faia A (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. J Microbiol Biotech 20:1314–1321

    Article  CAS  Google Scholar 

  104. Mendes Ferreirra A, Climaco M, Mendes Faia A (2001) The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—a preliminary study. J Appl Microbiol 91:67–71

    Article  Google Scholar 

  105. Mestres M, Busto O, Guasch J (2000) Analysis of organic sulfur compounds in wine aroma. J Chromatogr A 881:569–581

    Article  PubMed  CAS  Google Scholar 

  106. Mestres M, Marti M, Busto O, Guasch J (2000) Analysis of low-volatility organic sulphur compounds in wines by solid-phase microextraction and gas chromatography. J Chromatogr A 881:583–590

    Article  PubMed  CAS  Google Scholar 

  107. Molina A, Swiegers J, Varela C, Pretorius IS, Agosin E (2007) Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl Microbiol Biotechnol 77:675–687

    Article  PubMed  CAS  Google Scholar 

  108. Moreno-Arribas M, Polo M (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit Rev Food Sci Nutr 45:265–286

    Article  PubMed  CAS  Google Scholar 

  109. Mtshali P, Divol B, Van Rensburg P, Du Toit M (2010) Genetic screening of wine-related enzymes in Lactobacillus species isolated from South African wines. J Appl Microbiol 108:1389–1397

    Article  PubMed  CAS  Google Scholar 

  110. Nieuwoudt H, Prior BA, Pretorius IS, Bauer FF (2002) Glycerol in South African table wines: an assessment of its relationship to wine quality. S Afr J Enol Vitic 23:22–30

    CAS  Google Scholar 

  111. Nykanin L (1986) Formation and occurrence of flavor compounds in wine and distilled alcoholic beverages. Am J Enol Vitic 37:84–96

    Google Scholar 

  112. Obreque-Slìer E, Peña-Neira A, Lopez-Solis R (2010) Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol. J Agric Food Chem 58:3729–3735

    Article  PubMed  CAS  Google Scholar 

  113. Österbauer R, Matthews P, Jenkinson M, Beckmann C, Hansen P, Calvert G (2005) Color of scents: chromatic stimuli modulate odor responses in the human brain. J Neurophysiol 93:3434–3441

    Article  PubMed  Google Scholar 

  114. Park Y, Horton Shaffer C, Bennett G (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25

    Article  PubMed  CAS  Google Scholar 

  115. Perestrelo R, Fernandes A, Albuquerque F, Marques J, Camara J (2006) Analytical characterization of the aroma of Tinta Negra Mole red wine: identification of the main odorants compounds. Anal Chim Acta 563:154–164

    Article  CAS  Google Scholar 

  116. Perez-Gonzalez J, Gonzalez R, Querol A, Sendra J, Ramon D (1993) Construction of a recombinant wine yeast strain expressing β-(1,4)-endoglucanase and its use in microvinification processes. Appl Environ Microbiol 59:2801–2806

    PubMed  CAS  Google Scholar 

  117. Perez-Seradilla J, Luque de Castro M (2008) Role of lees in wine production: a review. Food Chem 111:447–456

    Article  CAS  Google Scholar 

  118. Perpete P, Duthoit O, De Maeyer S, Imray L, Lawton A, Stavropoulus K, Gitonga V, Hewlins MJ, Dickinson JA (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6:48–56

    Article  PubMed  CAS  Google Scholar 

  119. Plata C, Millan C, Mauricio J, Ortega J (2003) Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol 20:217–224

    Article  CAS  Google Scholar 

  120. Plutowska B, Wardencki W (2007) Aromagrams – aromatic profiles in the appreciation of food quality. Food Chem 101:845–872

    Article  CAS  Google Scholar 

  121. Polaskova P, Herszage J, Ebeler S (2008) Wine flavor: chemistry in a glass. Chem Soc Rev 37:2478–2489

    Article  PubMed  CAS  Google Scholar 

  122. Prohl C, Kispal G, Lill R (2000) Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae. Methods Enzymol 324:365–375

    Article  PubMed  CAS  Google Scholar 

  123. Pueyo E, Martınez-Rodrıguez AJ, Polo M, Santa-Maria G, Bartolome B (2000) Release of lipids during yeast autolysis in a model wine system. J Agric Food Chem 48:116–122

    Article  PubMed  CAS  Google Scholar 

  124. Quilter M, Hurley J, Lynch F, Murphy M (2003) The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J Inst Brew 109:34–40

    CAS  Google Scholar 

  125. Radoi F, Kishida M, Kawasaki H (2005) Characteristics of wines made Saccharomyces mutants which produce a polygalacturonase under wine-making conditions. Biosci Biotechnol Biochem 69:2224–2226

    Article  PubMed  CAS  Google Scholar 

  126. Regodon Mateos J, Perez-Nevado F, Ramirez Fernandez M (2006) Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine. Enzyme Microb Technol 40:151–157

    Article  CAS  Google Scholar 

  127. Ribéreau-Gayon J, Glories Y, Maujean A, Dubourdieu D (1998) Handbook of enology. The microbiology of wine and vinifications, vol II, 1st edn. Wiley, New York

    Google Scholar 

  128. Rojas V, Gil J, Pinaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188

    Article  PubMed  CAS  Google Scholar 

  129. Romano P, Soli M, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 50:1064–1067

    PubMed  CAS  Google Scholar 

  130. Romano P, Suzzi G (1996) Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol 62:309–315

    PubMed  CAS  Google Scholar 

  131. Ryan D, Prenzler P, Saliba A, Scollary G (2008) The significance of low impact odorants in global odour perception. Trends Food Sci Technol 19:383–389

    Article  CAS  Google Scholar 

  132. Saerens S, Delvaux F, Verstrepen K, Van Dijck P, Thevelein J, Delvaux F (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461

    Article  PubMed  CAS  Google Scholar 

  133. Sanchez Paloma E, Diaz-Maroto M, Gonzalez Vinas M, Soriano-Perez A, Perez-Coello M (2007) Aroma profile of wines from Albillo and Muscat grape varieties at different stages of ripening. Food Control 18:398–403

    Article  CAS  Google Scholar 

  134. Selli S, Canbas A, Cabaroglu T, Erten H, Lepoutre J-P, Gunata Z (2006) Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control 17:75–82

    Article  CAS  Google Scholar 

  135. Siebert T, Wood C, Elsey G, Pollnitz A (2008) Determination of Rotundone, the pepper aroma impact compound, in grapes and wine. J Agric Food Chem 56:3745–3748

    Article  PubMed  CAS  Google Scholar 

  136. Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8:996–1007

    Article  PubMed  CAS  Google Scholar 

  137. Swiegers J, Kievit R, Siebert T, Lattey K, Bramley B, Francis I, King E, Pretorius IS (2009) The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiol 26:204–211

    Article  PubMed  CAS  Google Scholar 

  138. Swiegers J, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Environ Microbiol 74:954–960

    CAS  Google Scholar 

  139. Taylor R, Jenkins W (1966) Leucine aminotransferase: II. Purification and characterization. J Biol Chem 241:4396–4405

    PubMed  CAS  Google Scholar 

  140. Ter Schure EG, Flikweert MT, Van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64:1303–1307

    PubMed  CAS  Google Scholar 

  141. Ugliano M, Genovese A, Moio L (2003) Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J Agric Food Chem 51:5073–5078

    Article  PubMed  CAS  Google Scholar 

  142. Verstrepen K, van Laere S, Vanderhaegen B, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein J, Delvaux F (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    Article  PubMed  CAS  Google Scholar 

  143. Viana F, Gil J, Genoves S, Valles S, Manzanares P (2008) Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol 25:778–785

    Article  PubMed  CAS  Google Scholar 

  144. Vilanova M, Blanco P, Cortes S, Castro M, Villa T, Sieiro C (2000) Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations. J Appl Microbiol 89:876–883

    Article  PubMed  CAS  Google Scholar 

  145. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke P (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157

    Article  PubMed  CAS  Google Scholar 

  146. Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71:3276–3284

    Article  PubMed  CAS  Google Scholar 

  147. Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541

    Article  PubMed  CAS  Google Scholar 

  148. Wood C, Siebert T, Parker M, Capone D, Elsey G, Pollnitz A, Eggers M, Meier M, Vossing T, Widder S, Krammer G, Sefton M, Herderich M (2008) From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J Agric Food Chem 56:3738–3744

    Article  PubMed  CAS  Google Scholar 

  149. Yoshimoto H, Fukushige T, Yonezawa T, Sakai Y, Okawa K, Iwamatsu A, Sone H, Tamai Y (2001) Pyruvate decarboxylase encoded by the PDC1 gene contributes, at least partially, to the decarboxylation of alpha-ketoisocaproate for isoamyl alcohol formation in Saccharomyces cerevisiae. J Biosci Bioeng 92:83–85

    Article  PubMed  CAS  Google Scholar 

  150. Yoshimoto H, Fukushige T, Yonezawa T, Sone H (2002) Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:501–508

    Article  PubMed  CAS  Google Scholar 

  151. Zalacain A, Marin J, Alonso G, Salinas M (2007) Analysis of wine primary aroma compounds by stir bar sorptive extraction. Talanta 71:1610–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for support by the National Research Foundation (NRF) of South Africa and by Winetech, the research funding body of the South African wine industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Prior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Styger, G., Prior, B. & Bauer, F.F. Wine flavor and aroma. J Ind Microbiol Biotechnol 38, 1145–1159 (2011). https://doi.org/10.1007/s10295-011-1018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1018-4

Keywords

Navigation