Skip to main content
Log in

Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day−1 with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Bosh R, Garcia-Valdes E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Article  PubMed  Google Scholar 

  2. Commendatore MG, Esteves JL, Colombo JC (2000) Hydrocarbons in coastal sediments of Patagonia, Argentina: levels and probable sources. Mar Pollut Bull 40:989–998

    CAS  Google Scholar 

  3. Cooper DG (1986) Biosurfactants. Microbiol Sci 3145–3150

  4. Cooper DG, Goldenberg BG (1987) Surface active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  5. Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Mora R, Bosch R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68:957–962

    Article  CAS  PubMed  Google Scholar 

  6. Gamati S, Gosselin C, Bergeron E, Chenier M, Truong TV, Bisaillon JG (1999) New plug flow slurry bioreactor for polycyclic aromatic hydrocarbon degradation. In: Alleman B, Leeson A (eds) Bioremediation technologies for polycyclic aromatic hydrocarbon compounds. Battelle Press, Columbus, Ohio, pp 1–6

  7. Haigler BE, Gibson DT (1990) Purification and properties of NADH-ferredoxin NAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol 172:457–464

    CAS  PubMed  Google Scholar 

  8. Irwin RJ, VanMouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia. National Park Service, Water Resources Division, Fort Collins, Co.

  9. Jeffrey AM, Yeh HJ, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14:575–584

    CAS  PubMed  Google Scholar 

  10. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    PubMed  Google Scholar 

  11. Karin A, Berry T, Burton DL (1997) Natural attenuation of diesel fuel in heavy clay soil. Can J Soil Sci 77:469–477

    Google Scholar 

  12. Lagrega MD, Buckingham PL, Evans JC (1994) Hazardous waste management. McGraw-Hill, New York

  13. Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66:1814–1817

    Article  CAS  PubMed  Google Scholar 

  14. Mills AL, Breuil C, Colwell RR (1978) Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method. Can J Microbiol 24:552–557

    Google Scholar 

  15. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525

    CAS  PubMed  Google Scholar 

  16. Morán AC, Olivera N, Commendatore M, Esteves JL, Siñeriz F (2000) Enhancement of hydrocarbon waste biodegradation by the addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71

    CAS  PubMed  Google Scholar 

  17. Olivera N (2001) Biorremediación de sistemas contaminados con hidrocarburos. Universidad Nacional del Sur. Bahía Blanca, Argentina. PhD thesis

  18. Olivera N, Commendatore MG, Morán AC, Esteves JL (2000) Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. J Ind Microbiol Biotechnol 25:70–73

    Article  CAS  Google Scholar 

  19. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  21. Sepic E, Trier C, Leskovsek H (1996) Biodegradation studies of selected hydrocarbons from diesel oil. Analyst 121:1451–1456

    CAS  PubMed  Google Scholar 

  22. Sepic E, Bricelj M, Leskovsek H (1997) Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J Appl Microbiol 83:561–568

    CAS  PubMed  Google Scholar 

  23. Stapleton RD, Sayler GS (1998) Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microb Ecol 36:349–361

    Article  PubMed  Google Scholar 

  24. Stapleton RD, Bright NG, Sayler GS (2000) Catabolic and genetic diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers. Microb Ecol 39:211–221

    CAS  PubMed  Google Scholar 

  25. United Nations Environmental Programme (1992) Determinations of petroleum hydrocarbons in sediments. Reference methods for marine pollution studies, no. 20. UNEP, Nairobi, Kenya

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (PICT 07-04069. BID 1201/OC-AR), (PICT-PIP 4271/96), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Olivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivera, N.L., Commendatore, M.G., Delgado, O. et al. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J IND MICROBIOL BIOTECHNOL 30, 542–548 (2003). https://doi.org/10.1007/s10295-003-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0078-5

Keywords

Navigation