Skip to main content
Log in

Computation of GPS P1–P2 Differential Code Biases with JASON-2

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

GPS Differential Code Biases (DCBs) computation is usually based on ground networks of permanent stations. The drawback of the classical methods is the need for the ionospheric delay so that any error in this quantity will map into the solution. Nowadays, many low-orbiting satellites are equipped with GPS receivers which are initially used for precise orbitography. Considering spacecrafts at an altitude above the ionosphere, the ionized contribution comes from the plasmasphere, which is less variable in time and space. Based on GPS data collected onboard JASON-2 spacecraft, we present a methodology which computes in the same adjustment the satellite and receiver DCBs in addition to the plasmaspheric vertical total electron content (VTEC) above the satellite, the average satellite bias being set to zero. Results show that GPS satellite DCB solutions are very close to those of the IGS analysis centers using ground measurements. However, the receiver DCB and VTEC are closely correlated, and their value remains sensitive to the choice of the plasmaspheric parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

(credits: G. Zaouche, CNES)

Fig. 10

(Sources: https://www.ngdc.noaa.gov for K p and F10.7 and http://wdc.kugi.kyoto-u.ac.jp for DST)

Similar content being viewed by others

References

  • AVISO website. http://www.aviso.altimetry.fr/fr/donnees/calval/orbit/precise-orbit-determination-verification.html

  • Banville S, Collins P, Zhang W, Langley RB (2013) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61(2):115–124

    Article  Google Scholar 

  • Foelsche U, Kirchengast G (2002) A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett. doi:10.1029/2001gl012744

    Google Scholar 

  • Gulyaeva TL, Huang X, Reinisch B (2002) Ionosphere-plasmasphere model software for ISO. Acta Geod Geophys Hung 37(2–3):143–152

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res. doi:10.1029/2006JB004707

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Shaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) GPS theory and practice, 5, revised edn. Springer, Wien

    Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, chapter 12, vol 1. American Institute of Aeronautics and Astronautics, New York, pp 485–515

    Google Scholar 

  • Lee HB, Jee G, Kim YH, Shim JS (2013) Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite. J Geophys Res 118:935–946. doi:10.1002/jgra.50130

    Article  Google Scholar 

  • Lin J, Yue X, Zhao S (2016) Estimation and analysis of GPS satellite DCB based on LEO observations. GPS Solut 20(2):251–258

    Article  Google Scholar 

  • Liu L, Wan W, Ning B (2006) A study of the ionogram derived effective scale height around the ionospheric hmF2. Ann Geophys 24:851–860

    Article  Google Scholar 

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES–CLS IGS analysis center. J Geod 86(11):991–1003. doi:10.1007/s00190-012-0559-2

    Article  Google Scholar 

  • Marinov P, Kutiev I, Belehaki A, Tsagouri I (2015) Modeling the plasmasphere to topside ionosphere scale height ratio. J Space Weather Space Clim. doi:10.1051/swsc/2015028

    Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 61(3):191–201. doi:10.1002/navi.64

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2015) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Xu G (2003) GPS theory, algorithms and applications. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Yizengaw E, Moldwin MB, Galvan D, Iijima BA, Komjathy A, Mannucci AJ (2008) Global plasmaspheric TEC and its relative contribution to GPS TEC. J Atmos Sol Terr Phys 70:1541–1548

    Article  Google Scholar 

  • Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo YH (2011) Quantitative evaluation of the low earth orbit satellite based slant total electron content determination. Space Weather. doi:10.1029/2011SW000687

    Google Scholar 

  • Zakharenkova I, Cherniak I (2016) How can GOCE and TerraSAR-X contribute to the topside ionosphere and plasmasphere research? Space Weather 13:271–285. doi:10.1002/2015SW001162

    Article  Google Scholar 

  • Zhong J, Lei J, Dou X, Yue X (2016) Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut 20(3):313–319

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the International GNSS Service (IGS) for providing orbits and RINEX data of its high-quality network of permanent stations. They would also thank all colleagues from Centre National d’Etudes Spatiales (CNES) in Toulouse for the interesting discussions and advice while writing and revising this work. In particular, they thank Gérard Zaouche for providing hardware temperature data of GPSP-B instrument onboard JASON-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Wautelet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wautelet, G., Loyer, S., Mercier, F. et al. Computation of GPS P1–P2 Differential Code Biases with JASON-2. GPS Solut 21, 1619–1631 (2017). https://doi.org/10.1007/s10291-017-0638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0638-1

Keywords

Navigation