Skip to main content
Log in

Contributions of thermoelastic deformation to seasonal variations in GPS station position

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We investigate surface displacements due to land temperature variation with the 2014 global thermoelastic model, which is a solution on a uniformly elastic sphere under the constraint that the geocenter remains stationary. In this research, the seasonal variations of global surface displacements are numerically simulated based on 0–10 cm underground land surface temperatures from National Oceanic and Atmospheric Administration. The displacements include vertical and horizontal components for the first time. Meanwhile, the annual contributions of geophysical sources, which are mainly due to atmosphere, ocean, snow and continental water, are also estimated. For comparative analyses, the partial displacement by annual mass-loading and the total displacement by the combined annual of thermoelasticity and mass-loading are calculated, respectively, and displayed against the annual displacements at stations of global positioning system network. Results of the numerical simulation show that the amplitude of surface thermoelastic deformation is at the millimeter level on the global scale, topped at about 3 mm for radial displacement and about 1.5 mm for transverse components, which need to be considered for the high-precision terrestrial reference frame. The combined deformation caused by thermoelastic and mass-loading can explain the seasonal GPS observations better than the mass-loading alone, in particular for the transverse displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alterrman Z, Jarrosh H, Pekeris CL (1959) Oscillation of the earth. Proc R Soc Lond A 252:80–95

    Article  Google Scholar 

  • Ben-Zion Y, Leary P (1986) Thermoelastic strain in a half-space covered by unconsolidated material. Bull Seismol Soc Am 76(5):1447–1460

    Google Scholar 

  • Berger J (1975) A note on thermoelastic strains and tilts. J Geophys Res 80:274–277

    Article  Google Scholar 

  • Bettinelli P, Avouac JP, Flouzat M, Bollinger L, Ramillien G, Rajaure S, Sapkota S (2008) Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth Planet Sci Lett 266:332–344

    Article  Google Scholar 

  • Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32:L16308. doi:10.1029/2005GL023491

    Article  Google Scholar 

  • Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253

    Article  Google Scholar 

  • Dong DN, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870

    Article  Google Scholar 

  • Dong DN, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075

    Article  Google Scholar 

  • Fang M, Dong DN, Hager H (2014) Displacements due to surface temperature variation on a uniform elastic sphere with its centre of mass stationary. Geophys J Int 196:194–203

    Article  Google Scholar 

  • Flechtner F, Dobslaw H, Fagiolini E (2014) AOD1B product description document for product release 05.technical report: GRACE 327-750 (GR-GFZ-AOD-0001)

  • Hatanaka Y, Sawada M, Horita A, Kusaka M, Johnson J, Rocken C (2001) Calibration of antenna-radome and monument-multipath effect of GEONET-Part 2: evaluation of the phase map by GEONET data. Earth Planets Sp 53:23–30

    Article  Google Scholar 

  • Hill EM, Davis JL, Elosegui P, Wernicke BP, Malikowski E, Niemi NA (2009) Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada. J Geophys Res 114:B11402. doi:10.1029/2008JB006027

    Article  Google Scholar 

  • Longman IM (1962) A Green’s function for determining the deformation of the Earth under surface mass loads: 1 Theory. J Geophys Res 67:845–850

    Article  Google Scholar 

  • Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. doi:10.1029/2003GL018828

    Article  Google Scholar 

  • Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in southern California Integrated GPS Network daily position time series. J Geophys Res 111:B02408

    Article  Google Scholar 

  • Ray J, van Dam T, Altamimi Z, Collilieux X (2006) Anomalous harmonics in the spectra of GPS position estimates. Eos Trans AGU 87(52): Fall Meet. Suppl, Abstract G43A-0985

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Ray J, Collilieux X, Rebischung P, van Dam T, Altamimi Z (2011) Consistency of crustal loading signals derived from models and GPS:inferences for GPS positioning errors. 2011 Fall Meeting, AGU: Abstract G51B-06

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng J (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

    Article  Google Scholar 

  • Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769

    Article  Google Scholar 

  • Tan WJ, Dong DN, Chen JP, Wu B (2016) Analysis of systematic differences from GPS-measured and GRACE-modeled deformation in Central Valley, California. Adv Sp Res 57:19

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, vanDam TM, Mayer-Gürr T (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85:291–310

    Article  Google Scholar 

  • Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401. doi:10.1029/2009GL038718

    Article  Google Scholar 

  • Tsai VC (2011) A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J Geophys Res 116:B04404

    Google Scholar 

  • van Dam TM, Wahr JM (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92:1281–1286

    Article  Google Scholar 

  • van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112(B3):B03404. doi:10.1029/2006JB004335

    Google Scholar 

  • Watson KM, Bock Y, Sandwell DT (2002) Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin. J Geophys Res 107:2074–2090. doi:10.1029/2001JB000470

    Google Scholar 

  • Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111:B09401. doi:10.1029/2005JB004100

    Google Scholar 

  • Yan H, Chen W, Zhu YZ, Zhang WM, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36:L13301. doi:10.1029/2009GL038152

    Article  Google Scholar 

  • Yan H, Chen W, Yuan LG (2016) Crustal vertical deformation response to different spatial scales of GRACE and GCMs surface loading. Geophys J Int 204:505–516

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the NSFC Grant (11673049, 11371037, 11373057), and State Key Laboratory of Geodesy and Earth’s Dynamics Grant (SKLGED2016-5-1-EZ). We thank the National Oceanic and Atmospheric Administration (NOAA) for providing the global land surface temperature (LST) data, and the International GNSS Service (IGS) for providing the GPS observation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Dong, D., Fang, M. et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position. GPS Solut 21, 1265–1274 (2017). https://doi.org/10.1007/s10291-017-0609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0609-6

Keywords

Navigation